Temperature stability of ultra low voltage signals multiplier

Authors

  • L. M. Pavlov National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" http://orcid.org/0000-0001-8273-9607
  • D. Yu. Lebedev National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

DOI:

https://doi.org/10.20535/RADAP.2017.69.49-55

Keywords:

signals multiplier, temperature stability, integrated chip correlators, vektor signals multiplying, signals samples

Abstract

The paper considers the thermal stability of ultra low voltage signals multipliers that form the basis of discrete-analog programmable filter-correlators. These correlators perform convolution vector of the input signal samples and a sequence of weighting coefficients impulse function. These coefficients take two values: +1 or -1. The multiplier is based on a MOS transistor. The first factor appears voltage signal sampling, which is stored on the gate of the transistor, and the second is determined by the location where the current of the transistor will be sent, which is the result of multiplying. In this case, the weighting factor is one that will be sent to the current summing bus "positive" current, and the pulse rate function determines -1 multiplier connection summing bus "negative" current. The final result of multiplication of vectors is generated by subtracting the output signals weighted summation of tires. Alternatively this conversion can be output currents to two outer transducers voltage differential signal current and formation voltage as an output voltage. Since the MOSFET current is subject to temperature dependence, this factor affects the accuracy of multiplication. Analysis of this relationship and the possibility of its weakening presented in this paper. In particular, the strategy of linear and non-linear approximation to the thermostable point is proposed. An analytical relationship is obtained for the necessary conditions for temperature stabilization. For the non-linear approximation strategy, a circuit with a nonlinear element-a bipolar transistor-is proposed. Experimental results of improving the temperature stabilization for both strategies are obtained.

Author Biographies

L. M. Pavlov, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Pavlov L.

D. Yu. Lebedev, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Lebedev D.

References

Перечень ссылок

Nandini A. S. Design and Implementation of Analog Multiplier with Improwed Linearity / A.S. Nandini, S. Madhavan, Ch. Sharma // International Journal of VLSI design & Communication Systems (VLSICS), Vol.3, No.5, pp. 93-109.

Duraisamy K. Low Power Analog Multiplier Using MIFGMOS / K. Duraisamy, U. Ragavendran // Journal of Computer Science. - 2013. - 9(4). - pp. 514-520.

Ghanavati B. Low-Voltage CMOS Multiplier Circuit Based on the Translinear Principle / B. Ghanavati, E.T. Moghaddam // Universal Journal of Electrical and Electronic Engineering. - 2014. - 2(3). - p. 124-127.

Quintero R. R. F. Design of Four-Quadrant Analog Multipliers Robust to PVT Variations / R. R. F. Quintero ; National Institute for Astrophysics, Optics and Electronics. - Tonantzintla, Puebla. - June 2014. - 81p.

Чаплыгин Ю.А. Исследование электрических характеристик КМОП-КНИ - структур с проектными нормами 0.5 мкм для высокотемпературной электроники / Ю.А. Чаплыгин, Т.Ю. Крупкина, А.Ю. Красюков, Е.А. Артамонова // Проблемы разработки перспективных микро- и наноэлектронных систем (МЭС-2016). - M. : ИППМ РАН. - 2016. - 6 с.

Павлов Л. Н. Схемотехника сверхнизковольтного перемножителя сигналов / Л.Н. Павлов, П.В. Кучернюк // Электронника и связь. - 2015. - Том. 20, № 6(89). - c. 11-15.

References

Nandini A.S., Madhavan S. and Sharma Ch. (2012) Design and Implementation of Analog Multiplier with Improwed Linearity, International Journal of VLSI design & Communication Systems (VLSICS), Vol.3, No.5 pp. 93-109. DOI: 10.5121/vlsic.2012.3508

Duraisamy K. and Ragavendran U. (2013) Low Power Analog Multiplier Using MIFGMOS, Journal of Computer Science, Vol 9, No 4, pp. 514-520. DOI: 10.3844/jcssp.2013.514.520

Ghanavati B. and Moghaddam E. T. (2014) Low-Voltage CMOS Multiplier Circuit Based on the Translinear Principle, Universal Journal of Electrical and Electronic Engineering, Vol. 2, No 3, pp. 124-127. DOI: 10.13189/ujeee.2014.020305

Quintero R. R. F. (2014) Design of Four-Quadrant Analog Multipliers Robust to PVT Variations. National Institute for Astrophysics, Optics and Electronics, 81 p.

Chaplygin Yu. A., Krupkina T. Yu., Krasyukov A. Yu. and Artamonova E. A. (2016) 0.5 um SOI CMOS for Extreme Temperature Applications, Problems of Advanced Micro- and Nanoelectronic Systems Development (MES-2016), 6 p.

Kucherniuk P. and Pavlov L. (2015) Network design of ultra low voltage multiplier, Elektronika i svyaz', Vol. 20, No 6(89), p. 11-15.

Published

2017-07-01

How to Cite

Павлов, Л. and Лебедев, Д. (2017) “Temperature stability of ultra low voltage signals multiplier”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, 0(69), pp. 49-55. doi: 10.20535/RADAP.2017.69.49-55.

Issue

Section

Designing of Radio Equipment