Remote temperature radiometric identification of liquids

Authors

Keywords:

radiometric system, thermal portrait, electromagnetic wave polarization, dielectric package, water solutions, refined oil products

Abstract

Introduction. Most of the known methods cannot be used to remotely analyze a liquid, as there is no way to make contact between the researched solution and the measuring equipment. Atoms or molecules of any physical object with a temperature higher than absolute zero make spontaneous movements, which are transformed into electromagnetic fluctuations of thermal radiation. This radiation depends not only on the absolute temperature of the object but also on multiple qualities of the object as well as its interaction with the environment, including thermal interactions.
Theoretical results. The analysis of dielectric cylindrical packages with researched liquids sealed inside was carried out based on quasioptical qualities of multilayer dielectric cylindrical lenses. The qualities of such lenses are related to parameters of both liquid and its package, therefore, it results in a possibility to distinguish liquids' parameters based on changes in penetrating electromagnetic waves' parameters.
Experimental results. The radiometric methods of measurements in 8mm wavelength range for remote identification of liquids sealed in dielectric packages. Polarizing static thermal portraits of liquids in the temperature range from 0ºC to 25ºC were obtained. The differences in physicochemical characteristics of the liquids cause differences in their thermal portraits, which manifest in quantities of minimums and maximums, and different slopes of particular parts of the graphs, and can be recorded distinctly. The areas of phase transitions between solid matter and liquid, which are defined by the existence of negative slope of dependence between the received signal level and the temperature in the area between two maximums of thermal portrait (thermal capacity) can be identified during temperature measurements of liquids by radiometric methods. There are defining characteristics for each of the liquid groups (water-alcohol solutions, refined oil products), which are related to heat transmission thermodynamics. During natural heating of the cool liquids, a thin layer of ice or dew is created on the surface of the package, which is an additional layer for a dielectric lens that decreases the amplitude of the received signal but does not change the quality of different liquid's thermal portraits.
Conclusions. The possibility of remote identification of liquids, which are similar in composition, for example, water solutions of ethanol with different concentration and refined oil products, is proved experimentally. Different types of packages that serve as an outer layer of a two-layered dielectric lens affect its quasioptical properties and therefore, the thermal portrait, which is being formed. Static thermal portraits show that main differences for liquids are found in the areas of minimal quantities of dependences of receiver signals' relative amplitudes, which occur in the thermal area and are connected to liquids' phase transitions (i.e. the existence of ice) in the package. Existence and size of droplets' layer depend on the specific heat of the liquid and its melting temperature. Graph analyzing of the experimental data (thermal portrait in a range of temperatures for water solutions of ethanol with different concentration) allows obtaining information about hydrogen bonds and solutions' structure, which matches with data obtained by more methods that are complex. The proposed method of remote identification of liquids that are sealed in a dielectric package is safe and environmentally friendly, as required of illuminating radiation does not exceed 20dB/кТ0. The sensitivity of the receiver used allows remote measurement of liquids' temperature, while it's sealed in dielectric package, regardless of electromagnetic wave distribution environment, with accuracy not less than 0,1ºC. The feasibility of the usage of polarization changes for remote identification of liquids, including flammable, based on changes in their thermal portrait's temperature, which are received by radiometric methods in 8-mm waveband range is experimentally shown. The broadband noise oscillator, which is being used, carries information about the liquid and the package.

Author Biographies

A. V. Pavlyuchenko, SRC "Iceberg", Kiev

Pavlyuchenko A. V.,Cand. of Sci(Techn)

P. P. Loshitskyi, National Technical University of Ukraine "Igor Sikorskyi Kyiv Politechnic Institute"

Loshitskyi P. P., Doc. of Sci(Tech), Prof.

References

Перечень ссылок

Salmon Neil A. Outdoor Passive Millimeter Wave Imaging: Phenomenology and Scene Simulation // IEEE Transactions on Antennas and Propagation. - 2018.

Jeffrey S. Lee, Gerald B. Cleaver. The cosmic microwave background radiation power spectrum as a random bit generator for symmetric- and asymmetric-key cryptography. Heliyon 3, (2017) e00422.

Amani Y. Owda, Neil Salmon, and Nacer-Ddine Rezgui. Electromagnetic Signatures of Human Skin in the Millimeter Wave Band 80–100 GHz // Progress In Electromagnetics Research B. - 2018. - Vol. 80. - pp. 79–99.

Samavi S., Shirani S. and Karimi N. Real-Time Processing and Compression of DNA Microarray Images // IEEE TRANSACTIONS ON IMAGE PROCESSING. - 2006. - VOL. 15, No. 3.

Federico Alimenti, Luca Roselli and Stefania Bonafoni. Microwave Radiometers for Fire Detection in Trains: Theory and Feasibility Study. Sensors, 2016,Vol. 16, p. 906.

Y. Divin, M. Lyatti, U. Poppe, K. Urban. Identification of liquids by high-Tc Josephson THz detectors. Physics Procedia, Vol. 36 (2012), pp. 29 - 34. DOI: 10.1016/j.phpro.2012.06.125.

Хорстхемке В., Лефевр Р. Индуцированные шумом переходы: Теория и применение в физике, химии и биологии: Пер. с англ. - М. : Мир, 1987. - 400с.

Павлюченко А. В., Лошицкий П. П., Шеленговский А.И., Бабенко В. В. Дистанционная идентификация жидкостей в закрытых диэлектрических емкостях в миллиметровых диапазонах длин волн I. Принципиальная возможность // Известия ВУЗов. Радиоэлектроника. - 2017, Т. 60, №10. - с. 547-558.

Павлюченко А. В., Лошицкий П. П., Шеленговский А.И., Бабенко В. В. Дистанционная идентификация жидкостей в закрытых диэлектрических емкостях в миллиметровых диапазонах длин волн II. Линейное сканирование. Известия ВУЗов. Радиоэлектроника. 2018, т. 61, №4 (670), с. 157- 167.

Харвей А. Ф. Техника сверхвысоких частот. Пер с англ. Под ред. В. И. Сушкевича. т.1. М., Сов. Радио. 1965.

Павлюченко А. В., Лошицкий П. П., Шеленговский А.И., Бабенко В. В. Радиометрическая подсветка ближней радиолокации // Вестник НТТУ "КПИ". Сер. Радиотехника. Радиоаппаратуростроение. - 2016. - Вып. 67. - с. 43-49. DOI: https:doi.org/10.20535/RADAP.2016.67.43-49.

Прикладная физическая оптика: Учеб. Пособие. В. А. Москалева, И. М. Нагибина, Н. А. Полушкина, В. Л. Рудин; Под общ. ред. В. А. Москалева. — С.-Пб. : Политехника, 1995. - 528 с.

Е. Г. Зелкин, Р. А. Петрова Линзовые антенны. М. : Сов. Радио, 1974. - 280 с.

Стрэтт Дж. (лорд Рэлей). Теория звука.Т.2. - М. : Гостехиздат, 1955. - 476с.

С. В. Пацаева. Подлинная жизнь водно-спиртовых растворов // Химия и жизнь. 2010. - №5. с. 41– 43.

Leffler L. W. Petroleum Refining for the Nontechnical Person. Second Edition. - Penn Well Books. Penn Well Publishing Company, 1985. - 230 p.

References

Salmon N.A. (2018) Outdoor Passive Millimeter-Wave Imaging: Phenomenology and Scene Simulation. IEEE Transactions on Antennas and Propagation, Vol. 66, Iss. 2, pp. 897-908. DOI: 10.1109/tap.2017.2781742

Lee J.S. and Cleaver G.B. (2017) The cosmic microwave background radiation power spectrum as a random bit generator for symmetric- and asymmetric-key cryptography. Heliyon, Vol. 3, Iss. 10, pp. e00422. DOI: 10.1016/j.heliyon.2017.e00422

Owda A.Y., Salmon N. and Rezgui N.D. (2018) Electromagnetic signatures of human skin in the millimeter wave band 80-100 GHz. Progress In Electromagnetics Research B, Vol. 80, pp. 79-99. DOI: 10.2528/pierb17120403

Samavi S., Shirani S. and Karimi N. (2006) Real-time processing and compression of DNA microarray images. IEEE Transactions on Image Processing, Vol. 15, Iss. 3, pp. 754-766. DOI: 10.1109/tip.2005.860618

Alimenti F., Roselli L. and Bonafoni S. (2016) Microwave Radiometers for Fire Detection in Trains: Theory and Feasibility Study. Sensors, Vol. 16, Iss. 6, pp. 906. DOI: 10.3390/s16060906

Divin Y., Lyatti M., Poppe U. and Urban K. (2012) Identification of Liquids by High-Tc Josephson THz Detectors. Physics Procedia, Vol. 36, , pp. 29-34. DOI: 10.1016/j.phpro.2012.06.125

Gzyl H. (1988) Noise-induced transitions: Theory and applications in physics, chemistry and biology. Acta Applicandae Mathematicae, Vol. 11, Iss. 1, pp. 97-98. DOI: 10.1007/bf00047115

Pavlyuchenko A.V., Loshitskiy P.P., Shelengovskiy A.I. and Babenko V.V. (2017) Remote identification of liquids in a dielectric container using millimeter waves. 1. Principal possibility. Radioelectronics and Communications Systems, Vol. 60, Iss. 10, pp. 423-430. DOI: 10.3103/s0735272717100016

Pavlyuchenko A.V., Loshitskiy P.P., Shelengovskiy A.I. and Babenko V.V. (2018) Remote Identification of Liquids in a Dielectric Container Using Millimeter Waves. 2. Linear Scanning. Radioelectronics and Communications Systems, Vol. 61, Iss. 4, pp. 157-167. DOI: 10.3103/s0735272718040039

Harvey A. F. (1963) Microwave Engineering, Academic Press, London and N. Y.

Pavlyuchenko A. V., Loshitskyi P. P. Shelenhivskyi A. I. and Babenko V. V. (2016) Radiometric illumination for short-range radar. Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, Iss. 67, pp. 43-49. DOI: 10.20535/RADAP.2016.67.43-49.

Moskaleva V. A. ed., Nagibina I. M., Polushkina N. A., Rudin V. L. (1995) Prikladnaya fizicheskaya optika [Applied of physical optics], Polytechnic, S.P., 528 p.

Zelkin E. G. and Petrova R. A. (1974) Linzovye antenny [Lens antennas], Moscow, Sov. Radio, 280 p.

Strutt J. W. and Rayleigh B. (1878) The theory of sound, Vol. 2, London, MacMillan and Co., 530 p.

Patsaeva S. V. (2010) Podlinnaya zhizn' vodno-spirtovykh rastvorov [Authentic life of the aqueous-alcoholic solution], Khimiya i zhizn', No. 5, pp. 41-43.

Leffler L. W. (1985) Petroleum Refining for the Nontechnical Person, Penn Well Books, Penn Well Publishing Company, 230 p.

Published

2019-03-30

How to Cite

Павлюченко, А. В. and Лошицкий, П. П. (2019) “Remote temperature radiometric identification of liquids”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, 0(76), pp. 44-57. Available at: https://radap.kpi.ua/radiotechnique/article/view/1530 (Accessed: 22January2025).

Issue

Section

Theory and Practice of Radio Measurements