Method for calculating a cylindrical ultrasonic cavitation filter chamber with a regeneration effect
DOI:
https://doi.org/10.20535/RADAP.2020.82.52-60Keywords:
ultrasonic cavitation reactor, ultrasonic resonance system, cavitation filtration, methodology for calculating oscillatory systems, tubular vibrator, piezoelectric drive for longitudinal movementsAbstract
Introduction. The creation of modern ultrasonic cavitation equipment for filtering working fluids in various technological processes is associated with the study of the interaction of a liquid load with ultrasonic emitters, taking into account the influence of the geometric shape of the cavitation chamber. The efficiency of the operation of ultrasonic cavitation devices for filtration is a rather urgent issue today and directly depends on the quality of this agreement.
Problem statement. To build an ultrasonic filter with a regeneration effect and to increase its efficiency, it is necessary to create a calculation method that will take into account both the impedance of electro-acoustic emitters and the complexity of the geometric shape of the cavitation chamber.
Development of calculation methods. The proposed method for calculating the geometric dimensions of the acoustic resonance system of the modular section of the tubular ultrasonic cavitator, which is excited by folded piezoelectric drive-emitters, which carry out longitudinal vibrations and are installed on the outer surface of the tubular vibrator.
Simulation results. The results of modeling in the Abaqus Student Edition 2018 software environment are presented, confirming the possibility of creating ultrasonic flow cavitators, the vibrator, which are excited in a radial-flexion mode of vibration, for the technological process of ultrasonic cavitation filtration with the regeneration effect.
Conclusions. The proposed calculation technique allows designing cylindrical ultrasonic cavitation filter chambers with a regeneration effect. Repeated practical verification of the presented method for calculating resonant acoustic systems has confirmed its sufficient accuracy under the applied assumptions.
References
Перелік посилань
Ляшок A. B. Ультразвукове розпилення рідини у мeхатроиних системах штучного мікроклімату / A. B. Ляшок, О. Ф. Луговський // Промислова гідравліка і пневматика. - 2011. - № 4. - C. 20–25.
Яхно О. М. Исследование возможностей технологии ультразвуковой кавитационной очистки эластичных поверхностей / О. М. Яхно, Е. А. Луговская, А. В. Мовчанюк // Вісник НТУУ <<КПІ>>. Машинобудування. - 2010. - № 58. - C. 234-240.
Колос А. А. Ультразвуковая очистка деталей во фреоновых композициях / А. А. Колос // Вісник двигунобудування. - 2014. - № 2. - C. 192–196.
Хмелев В. Н. Ультазвуковая кавитационная обработка вязких дисперсніх жидких сред / В. Н. Хмелев, С. С. Хмелев, Р. Н. Голых, А. В. Шалунов // Ползуновский вестник. - 2014. - № 4. - Т.2. - С. 110–115.
Берник І. М. Інтенсифікація процесу екстрагування рослинної сировини з використанням ультразвукової кавітації / І. М. Берник // Техніка, енергетика, транспорт АПК. - 2017. - № 3. - С. 69-73.
Al-Amoudi A. Fouling strategies and the cleaning system of nf membranes and factors affecting cleaning efficiency / A. Al-Amoudi, R.W. Lovitt // Journal of Membrane Science. - 2007. - pp. 4–28.
Regula C. Chemical cleaning/disinfection and ageing of organic uf membranes: a review / C. Regula, E.Carretier, Y. Wyart, та. ін. // Water Research. - 2014. - Vol. 56, № 1. - pp. 325–365.
Porcelli N. Chemical cleaning of potable water membranes: a review / N. Porcelli, S. Judd // Separation and Purification Technology. - 2010. - Vol. 44, № 5. - pp. 1389–1398.
Wegener K. Fluid elements in machine tools / K. Wegener, J. Mayr, M. Merklein and others // CIRP Annals - Manufacturing Technology. - 2017. - Vol. 66, № 2. - pp. 611–634.
Сиротюк М.Г. Экспериментальные исследования ультразвуковой кавитации. - В кн.: Физика и техника мощного ультразвука, том.II. Мощные ультразвуковые поля / Под ред. Л.Д. Розенберга. - М.: Наука, 1968. - С. 167-221
Gracey, M. T. Cavitation erosion used for material testing / M.T. Gracey, A.F. Conn // Erosion by liquid and solid impact: рroc. of 7th intern. conf. 7 – 10 sept. 1987 – Cambridge. -. 1987. - pp. 25 – 34.
Linzheng Ye. Damage characteristics and surface description of near-wall materials subjected to ultrasonic cavitation / Ye Linzheng, Zhu Xijing, Wei Xumin, Wu Shu'an // Ultrasonics Sonochemistry. - 2020. - Vol. 67.
Методика расчета цилиндрических ультразвуковых кавитационных камер с радиально-изгибными колебаниями стенок / А. В. Мовчанюк // Вісник Національного технічного університету України "Київський політехнічний інститут". Серія: Машинобудування. - 2015. - № 3. - С. 80-86.
Joon Hin Leea. Numerical simulation on ultrasonic cavitation due to superposition of acoustic waves / Hin Leea Joon, Yen Tey Wah, Moon Lee Kiat, Kang Hooi-Siang, Quen Lee Kee // Materials Science for Energy Technologies. - 2020. - Vol. 3. - pp. 593-600.
Берник І. М. Методика розрахунку ультразвукового кавітаційного обладнання для технологічного процесу гідролізу-екстрагування пектину / І. М. Берник, І. А. Гришко, О. Ф. Луговський // Вібрації в техніці та технологіях. - 2009. - № 4 (56). - С. 123-128.
Игнациус Г. И. Теория поля / Г. И. Игнациус. - Москва: Знание, 1971. - 112 с.
Лепендин Л. Ф. Акустика / учебн. пособие для вузов / Л. Ф. Лепендин. - Москва: Высшая школа, 1978. - 448 с.
Nakayama T. Higher mathematics for physics and engineering / T. Nakayama, H. Shima. - Berlin, Heidelberg : Springer, 2011. - 694 с.
Guggenberger J. Vibrations / J. Guggenberger, G. Müller // Handbook of Engineering Acoustics. - Berlin, Heidelberg : Springer, 2013. - С. 651–690.
Зілінський А. Performance increase of ultrasound liquid sprayers / А. Зілінський, А. Мовчанюк, О. Луговський, А. Лавриненков // Mechanics and Advanced Technologies. - 2017. - Vol. 2. - C. 113-122. https://doi.org/10.20535/2521-1943.2017.80.111878
Кумабэ Д. Вибрационное резание / Д. Кумабэ. - Москва: Машиностроение, 1985. - 424 с.
Богуслаев В. А. Формирование поверхностного слоя деталей выглаживанием с ультразвуковым нагружением. монография / В. А. Богуслаев, В. А. Титов, А. Я. Кочан, та. ін. - Запорожье: Мотор Січ, 2012. - 236 с.
References
Liashok A. V. and Luhovskyi O.F. (2011) Ultrazvukove rozpylennia ridyny u mekhatroynykh systemakh shtuchnoho mikroklimatu [Ultrasonic spraying of liquid in mechatronic systems of artificial microclimate]. Promyslova hidravlika i pnevmatyka, no 4, pp. 20–25.
Jakhno O. M., Luhovska K. O. and Movchanuk A. V. (2010) Issledovaniye vozmozhnostey tekhnologii ul'trazvukovoy kavitatsionnoy ochistki elastichnykh poverkhnostey [Study of the capabilities of the technology of ultrasonic cavitation cleaning of elastic surfaces], Visnyk NTUU «KPI». Mashynobuduvannia, no. 58, pp. 234-240.
Kolos A. A. (2014) The ultrasound clearing in freon-compositions, Visnyk dvyhunobuduvannia, No 2, pp. 192-196. (In Russian)
Khmelev V. N., Khmelev S. S., Golykh R. N. and Shalunov A. V. (2014) Ul'trazvukovaya kavitatsionnaya obrabotka vyazkikh dispersnіkh zhidkikh sred [Ultrasonic cavitation treatment of viscous dispersed liquid media] Polzunovskii vestnik, Vol. 2, No 4, pp. 110–115.
Bernyk I. M. (2017) Intensyfikatsiia protsesu ekstrahuvannia roslynnoi syrovyny z vykorystanniam ultrazvukovoi kavitatsii [Intensification of the process of extraction of vegetable raw materials using ultrasonic cavitation], Tekhnika, enerhetyka, transport APK, Iss. 3, pp. 69-73.
Al-Amoudi A. and Lovitt R.W. (2007) Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency. Journal of Membrane Science, Vol. 303, Iss. 1-2, pp. 4-28. DOI: 10.1016/j.memsci.2007.06.002
Regula C., Carretier E., Wyart Y., Gésan-Guiziou G., Vincent A., Boudot D. and Moulin P. (2014) Chemical cleaning/disinfection and ageing of organic UF membranes: A review. Water Research, Vol. 56, pp. 325-365. DOI: 10.1016/j.watres.2014.02.050
Porcelli N. and Judd S. (2010) Chemical cleaning of potable water membranes: A review. Separation and Purification Technology, Vol. 71, Iss. 2, pp. 137-143. DOI: 10.1016/j.seppur.2009.12.007
Wegener K., Mayr J., Merklein M., Behrens B., Aoyama T., Sulitka M., Fleischer J., Groche P., Kaftanoglu B., Jochum N. and Möhring H. (2017) Fluid elements in machine tools. CIRP Annals, Vol. 66, Iss. 2, pp. 611-634. DOI: 10.1016/j.cirp.2017.05.008
Sirotyuk M.G. and Rosenberg L. D. ed. (1968) Eksperimentalnyye issledovaniya ultrazvukovoy kavitatsii [Experimental studies of ultrasonic cavitation. - In the book: Physics and technology of powerful ultrasound, Vol. II. Powerful ultrasonic fields]. Moscow, Science Publ., pp. 167-221
Gracey M.T. and Conn A. F. (1987) Cavitation erosion used for material testing. Erosion by liquid and solid impact, Proc. of 7th intern. conf., Cambridge, pp. 25-34.
Ye L., Zhu X., Wei X. and Wu S. (2020) Damage characteristics and surface description of near-wall materials subjected to ultrasonic cavitation. Ultrasonics Sonochemistry, Vol. 67, pp. 105175. DOI: 10.1016/j.ultsonch.2020.105175
Movchanuk A. (2015) Calculation of cylinder ultrasonic cavitation cells with radial - bending fluctuations of the walls. Journal of Mechanical Engineering, no. 3, pp. 80-86.
Lee J.H., Tey W.Y., Lee K.M., Kang H. and Lee K.Q. (2020) Numerical simulation on ultrasonic cavitation due to superposition of acoustic waves. Materials Science for Energy Technologies, Vol. 3, pp. 593-600. DOI: 10.1016/j.mset.2020.06.004
Bernyk I. M., Gryshko I. A. and Luhovskyi O. F. (2009) Metodyka rozraxunku ul`trazvukovogo kavitacijnogo obladnannya dlya texnologichnogo procesu gidrolizu-ekstraguvannya pektynu [Method of calculation of ultrasonic cavitation equipment for the technological process of hydrolysis-extraction of pectin]. Journal of Vibration in engineering and technology, No 4 (56), pp. 123-128.
Ignatius G. I. (1971) Teoriya polya [Field theory]. Moscow, Science, 112 p.
Lependin L. F. (1978) Akustika [Acoustics]. Moscow, High school publ., 448 p.
Nakayama T. and Shima H. (2010) Higher Mathematics for Physics and Engineering. DOI: 10.1007/b138494
Guggenberger J. and Müller G. (2013) Vibrations. Handbook of Engineering Acoustics, pp. 651-690. DOI: 10.1007/978-3-540-69460-1_22
Zilinskyi A., Movchanuk A., Luhovskyi O. and Lavrynenkov А. (2017) Performance increase of ultrasound liquid sprayers. Mechanics and Advanced Technologies, Vol. 0, Iss. 80. DOI: 10.20535/2521-1943.2017.80.111878
Kumabe D. (1985) Vibratsionnoye rezaniye [Vibration cutting]. Moscow: Mechanical Engineering, 424 p.
Boguslaev V. A., Titov V. A., Kochan A. Ya. (2012) Formirovaniye poverkhnostnogo sloya detaley vyglazhivaniyem s ultrazvukovym nagruzheniyem [Formation of the surface layer of parts by burnishing with ultrasonic loading]. Zaporozhye, Motor Sich, 236 p.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Аліна Шульга, Андрій Зілінський, Олександр Луговський, Ігор Гришко, Олександр Галецький
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).