Method for calculating a cylindrical ultrasonic cavitation filter chamber with a regeneration effect

Authors

DOI:

https://doi.org/10.20535/RADAP.2020.82.52-60

Keywords:

ultrasonic cavitation reactor, ultrasonic resonance system, cavitation filtration, methodology for calculating oscillatory systems, tubular vibrator, piezoelectric drive for longitudinal movements

Abstract

Introduction. The creation of modern ultrasonic cavitation equipment for filtering working fluids in various technological processes is associated with the study of the interaction of a liquid load with ultrasonic emitters, taking into account the influence of the geometric shape of the cavitation chamber. The efficiency of the operation of ultrasonic cavitation devices for filtration is a rather urgent issue today and directly depends on the quality of this agreement.

Problem statement. To build an ultrasonic filter with a regeneration effect and to increase its efficiency, it is necessary to create a calculation method that will take into account both the impedance of electro-acoustic emitters and the complexity of the geometric shape of the cavitation chamber.

Development of calculation methods. The proposed method for calculating the geometric dimensions of the acoustic resonance system of the modular section of the tubular ultrasonic cavitator, which is excited by folded piezoelectric drive-emitters, which carry out longitudinal vibrations and are installed on the outer surface of the tubular vibrator.

Simulation results. The results of modeling in the Abaqus Student Edition 2018 software environment are presented, confirming the possibility of creating ultrasonic flow cavitators, the vibrator, which are excited in a radial-flexion mode of vibration, for the technological process of ultrasonic cavitation filtration with the regeneration effect.

Conclusions. The proposed calculation technique allows designing cylindrical ultrasonic cavitation filter chambers with a regeneration effect. Repeated practical verification of the presented method for calculating resonant acoustic systems has confirmed its sufficient accuracy under the applied assumptions.

Author Biographies

O. F. Luhovskyi, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Doc. S. (Tech), Prof.

A. I. Zilinskyi, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Assistant of Professor

A. V. Shulha, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

PhD

I. A. Gryshko, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Cand. of Sci (Tech), Assoc. Prof. 

A. D. Lavrinenkov , National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Cand. of Sci.

O. S. Haletskyi, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Cand. of Sci (Tech), Assoc. Prof. 

O. P. Zavalii , National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

студент механіко-машинобудівного інституту

References

Перелік посилань

Ляшок A. B. Ультразвукове розпилення рідини у мeхатроиних системах штучного мікроклімату / A. B. Ляшок, О. Ф. Луговський // Промислова гідравліка і пневматика. - 2011. - № 4. - C. 20–25.

Яхно О. М. Исследование возможностей технологии ультразвуковой кавитационной очистки эластичных поверхностей / О. М. Яхно, Е. А. Луговская, А. В. Мовчанюк // Вісник НТУУ <<КПІ>>. Машинобудування. - 2010. - № 58. - C. 234-240.

Колос А. А. Ультразвуковая очистка деталей во фреоновых композициях / А. А. Колос // Вісник двигунобудування. - 2014. - № 2. - C. 192–196.

Хмелев В. Н. Ультазвуковая кавитационная обработка вязких дисперсніх жидких сред / В. Н. Хмелев, С. С. Хмелев, Р. Н. Голых, А. В. Шалунов // Ползуновский вестник. - 2014. - № 4. - Т.2. - С. 110–115.

Берник І. М. Інтенсифікація процесу екстрагування рослинної сировини з використанням ультразвукової кавітації / І. М. Берник // Техніка, енергетика, транспорт АПК. - 2017. - № 3. - С. 69-73.

Al-Amoudi A. Fouling strategies and the cleaning system of nf membranes and factors affecting cleaning efficiency / A. Al-Amoudi, R.W. Lovitt // Journal of Membrane Science. - 2007. - pp. 4–28.

Regula C. Chemical cleaning/disinfection and ageing of organic uf membranes: a review / C. Regula, E.Carretier, Y. Wyart, та. ін. // Water Research. - 2014. - Vol. 56, № 1. - pp. 325–365.

Porcelli N. Chemical cleaning of potable water membranes: a review / N. Porcelli, S. Judd // Separation and Purification Technology. - 2010. - Vol. 44, № 5. - pp. 1389–1398.

Wegener K. Fluid elements in machine tools / K. Wegener, J. Mayr, M. Merklein and others // CIRP Annals - Manufacturing Technology. - 2017. - Vol. 66, № 2. - pp. 611–634.

Сиротюк М.Г. Экспериментальные исследования ультразвуковой кавитации. - В кн.: Физика и техника мощного ультразвука, том.II. Мощные ультразвуковые поля / Под ред. Л.Д. Розенберга. - М.: Наука, 1968. - С. 167-221

Gracey, M. T. Cavitation erosion used for material testing / M.T. Gracey, A.F. Conn // Erosion by liquid and solid impact: рroc. of 7th intern. conf. 7 – 10 sept. 1987 – Cambridge. -. 1987. - pp. 25 – 34.

Linzheng Ye. Damage characteristics and surface description of near-wall materials subjected to ultrasonic cavitation / Ye Linzheng, Zhu Xijing, Wei Xumin, Wu Shu'an // Ultrasonics Sonochemistry. - 2020. - Vol. 67.

Методика расчета цилиндрических ультразвуковых кавитационных камер с радиально-изгибными колебаниями стенок / А. В. Мовчанюк // Вісник Національного технічного університету України "Київський політехнічний інститут". Серія: Машинобудування. - 2015. - № 3. - С. 80-86.

Joon Hin Leea. Numerical simulation on ultrasonic cavitation due to superposition of acoustic waves / Hin Leea Joon, Yen Tey Wah, Moon Lee Kiat, Kang Hooi-Siang, Quen Lee Kee // Materials Science for Energy Technologies. - 2020. - Vol. 3. - pp. 593-600.

Берник І. М. Методика розрахунку ультразвукового кавітаційного обладнання для технологічного процесу гідролізу-екстрагування пектину / І. М. Берник, І. А. Гришко, О. Ф. Луговський // Вібрації в техніці та технологіях. - 2009. - № 4 (56). - С. 123-128.

Игнациус Г. И. Теория поля / Г. И. Игнациус. - Москва: Знание, 1971. - 112 с.

Лепендин Л. Ф. Акустика / учебн. пособие для вузов / Л. Ф. Лепендин. - Москва: Высшая школа, 1978. - 448 с.

Nakayama T. Higher mathematics for physics and engineering / T. Nakayama, H. Shima. - Berlin, Heidelberg : Springer, 2011. - 694 с.

Guggenberger J. Vibrations / J. Guggenberger, G. Müller // Handbook of Engineering Acoustics. - Berlin, Heidelberg : Springer, 2013. - С. 651–690.

Зілінський А. Performance increase of ultrasound liquid sprayers / А. Зілінський, А. Мовчанюк, О. Луговський, А. Лавриненков // Mechanics and Advanced Technologies. - 2017. - Vol. 2. - C. 113-122. https://doi.org/10.20535/2521-1943.2017.80.111878

Кумабэ Д. Вибрационное резание / Д. Кумабэ. - Москва: Машиностроение, 1985. - 424 с.

Богуслаев В. А. Формирование поверхностного слоя деталей выглаживанием с ультразвуковым нагружением. монография / В. А. Богуслаев, В. А. Титов, А. Я. Кочан, та. ін. - Запорожье: Мотор Січ, 2012. - 236 с.

References

Liashok A. V. and Luhovskyi O.F. (2011) Ultrazvukove rozpylennia ridyny u mekhatroynykh systemakh shtuchnoho mikroklimatu [Ultrasonic spraying of liquid in mechatronic systems of artificial microclimate]. Promyslova hidravlika i pnevmatyka, no 4, pp. 20–25.

Jakhno O. M., Luhovska K. O. and Movchanuk A. V. (2010) Issledovaniye vozmozhnostey tekhnologii ul'trazvukovoy kavitatsionnoy ochistki elastichnykh poverkhnostey [Study of the capabilities of the technology of ultrasonic cavitation cleaning of elastic surfaces], Visnyk NTUU «KPI». Mashynobuduvannia, no. 58, pp. 234-240.

Kolos A. A. (2014) The ultrasound clearing in freon-compositions, Visnyk dvyhunobuduvannia, No 2, pp. 192-196. (In Russian)

Khmelev V. N., Khmelev S. S., Golykh R. N. and Shalunov A. V. (2014) Ul'trazvukovaya kavitatsionnaya obrabotka vyazkikh dispersnіkh zhidkikh sred [Ultrasonic cavitation treatment of viscous dispersed liquid media] Polzunovskii vestnik, Vol. 2, No 4, pp. 110–115.

Bernyk I. M. (2017) Intensyfikatsiia protsesu ekstrahuvannia roslynnoi syrovyny z vykorystanniam ultrazvukovoi kavitatsii [Intensification of the process of extraction of vegetable raw materials using ultrasonic cavitation], Tekhnika, enerhetyka, transport APK, Iss. 3, pp. 69-73.

Al-Amoudi A. and Lovitt R.W. (2007) Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency. Journal of Membrane Science, Vol. 303, Iss. 1-2, pp. 4-28. DOI: 10.1016/j.memsci.2007.06.002

Regula C., Carretier E., Wyart Y., Gésan-Guiziou G., Vincent A., Boudot D. and Moulin P. (2014) Chemical cleaning/disinfection and ageing of organic UF membranes: A review. Water Research, Vol. 56, pp. 325-365. DOI: 10.1016/j.watres.2014.02.050

Porcelli N. and Judd S. (2010) Chemical cleaning of potable water membranes: A review. Separation and Purification Technology, Vol. 71, Iss. 2, pp. 137-143. DOI: 10.1016/j.seppur.2009.12.007

Wegener K., Mayr J., Merklein M., Behrens B., Aoyama T., Sulitka M., Fleischer J., Groche P., Kaftanoglu B., Jochum N. and Möhring H. (2017) Fluid elements in machine tools. CIRP Annals, Vol. 66, Iss. 2, pp. 611-634. DOI: 10.1016/j.cirp.2017.05.008

Sirotyuk M.G. and Rosenberg L. D. ed. (1968) Eksperimentalnyye issledovaniya ultrazvukovoy kavitatsii [Experimental studies of ultrasonic cavitation. - In the book: Physics and technology of powerful ultrasound, Vol. II. Powerful ultrasonic fields]. Moscow, Science Publ., pp. 167-221

Gracey M.T. and Conn A. F. (1987) Cavitation erosion used for material testing. Erosion by liquid and solid impact, Proc. of 7th intern. conf., Cambridge, pp. 25-34.

Ye L., Zhu X., Wei X. and Wu S. (2020) Damage characteristics and surface description of near-wall materials subjected to ultrasonic cavitation. Ultrasonics Sonochemistry, Vol. 67, pp. 105175. DOI: 10.1016/j.ultsonch.2020.105175

Movchanuk A. (2015) Calculation of cylinder ultrasonic cavitation cells with radial - bending fluctuations of the walls. Journal of Mechanical Engineering, no. 3, pp. 80-86.

Lee J.H., Tey W.Y., Lee K.M., Kang H. and Lee K.Q. (2020) Numerical simulation on ultrasonic cavitation due to superposition of acoustic waves. Materials Science for Energy Technologies, Vol. 3, pp. 593-600. DOI: 10.1016/j.mset.2020.06.004

Bernyk I. M., Gryshko I. A. and Luhovskyi O. F. (2009) Metodyka rozraxunku ul`trazvukovogo kavitacijnogo obladnannya dlya texnologichnogo procesu gidrolizu-ekstraguvannya pektynu [Method of calculation of ultrasonic cavitation equipment for the technological process of hydrolysis-extraction of pectin]. Journal of Vibration in engineering and technology, No 4 (56), pp. 123-128.

Ignatius G. I. (1971) Teoriya polya [Field theory]. Moscow, Science, 112 p.

Lependin L. F. (1978) Akustika [Acoustics]. Moscow, High school publ., 448 p.

Nakayama T. and Shima H. (2010) Higher Mathematics for Physics and Engineering. DOI: 10.1007/b138494

Guggenberger J. and Müller G. (2013) Vibrations. Handbook of Engineering Acoustics, pp. 651-690. DOI: 10.1007/978-3-540-69460-1_22

Zilinskyi A., Movchanuk A., Luhovskyi O. and Lavrynenkov А. (2017) Performance increase of ultrasound liquid sprayers. Mechanics and Advanced Technologies, Vol. 0, Iss. 80. DOI: 10.20535/2521-1943.2017.80.111878

Kumabe D. (1985) Vibratsionnoye rezaniye [Vibration cutting]. Moscow: Mechanical Engineering, 424 p.

Boguslaev V. A., Titov V. A., Kochan A. Ya. (2012) Formirovaniye poverkhnostnogo sloya detaley vyglazhivaniyem s ultrazvukovym nagruzheniyem [Formation of the surface layer of parts by burnishing with ultrasonic loading]. Zaporozhye, Motor Sich, 236 p.

Published

2020-09-30

How to Cite

Луговський, О. Ф., Зілінський, А. І., Шульга, А. В., Гришко, . І. А., Лавріненков, А. Д., Галецький, О. С. and Завалій, О. П. (2020) “Method for calculating a cylindrical ultrasonic cavitation filter chamber with a regeneration effect”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, (82), pp. 52-60. doi: 10.20535/RADAP.2020.82.52-60.

Issue

Section

Designing of Radio Equipment