Сomparative Analysis of Polynomial Maximization and Maximum Likelihood Estimates for Data with Exponential Power Distribution





exponential power distribution, stochastic polynomials, high-order statistics, parameter estimation


The work is devoted to the estimate accuracy comparative analysis of the experimental data parameters with exponential power distribution (EPD) using the classical Maximum Likelihood Estimation (MLE) and the original Polynomial Maximization Method (PMM). In contrast to the parametric approach of MLE, which uses the description in the form of probability density distribution, PMM is based on a partial description in the of higher-order statistics form and the mathematical apparatus of Kunchenko's stochastic polynomials. An algorithm for finding PMM estimates using 3rd order stochastic polynomials is presented. Analytical expressions allowing to determine the variance of PMM-estimates of the asymptotic case parameters and EPD parameters with a priori information are obtained. It is shown that the relative theoretical estimates accuracy of different methods significantly depends on the EPD shape parameter and matches only for a separate case of Gaussian distribution. The effectiveness of different approaches (including valuation of mean values estimates) both with and without a priori information on EPD properties was investigated by repeated statistical tests (through Monte Carlo Method). The greatest efficiency areas for each of methods depending on EPD shape parameter and sample data volume are constructed.

Author Biographies

S. V. Zabolotnii, Cherkasy State Business College

Doctor of Technical Sciences, Professor of Computer Engineering and Information Technologies Department

A. V. Chepynoha, Cherkasy State Technological University

Ph.D., Associate Professor of Informatics, Information Security and Documentation Department

A. M. Chorniy, Cherkasy State Technological University

Ph.D., Associate Professor of Radio Engineering, Telecommunication and Robotic Systems Department

A. V. Honcharov, Cherkasy State Technological University

Ph.D., Associate Professor of Radio Engineering, Telecommunication and Robotic Systems Department


Bezuglov D.A., Andrjushhenko I.V., Shvidchenko S.A. Informacionnaja tehnologija identifikacii zakona raspredelenija na baze kumuljantnogo metoda analiza rezul'tatov izmerenij [Information technology for identification of the distribution law based on the cumulant method of results measurement analysis]. Informacionnye sistemy i tehnologii. Teorija i praktika: cbornik nauchnyh trudov [Information systems and technologies. Theory and Practice: Collection of Scientific Papers], Shahty, 2011, pp. 186-194.

Krasilnikov A. (2019) Family of Subbotin Distributions and its Classification. Èlektronnoe modelirovanie, Vol. 41, Iss. 3, pp. 15-32. DOI: 10.15407/emodel.41.03.015

Novitskii P. V., Zograf I. A. Otsenka pogreshnostei rezul’tatov izmerenii [Estimation of errors of measurement results]. Moscow, Energoatomizdat Publ., 1991, 304 p.

Subbotin M. T. On the law of frequency of error. Mat. Sb., 1923, vol. 31, no. 2, pp. 296-301.

Gui W. (2013) Statistical Inferences and Applications of the Half Exponential Power Distribution. Journal of Quality and Reliability Engineering, pp. 1-9. DOI: 10.1155/2013/219473.

Hassan M. Y., Hijazi R. H. (2010) А bimodal exponential power distribution. Pak. J. Statist , vol. 26, no. 2, pp. 379–396.

Maugey T., Gauthier J., Pesquet-Popescu B. and Guillemot C. (2010) Using an exponential power model forwyner ziv video coding. 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2338-2341. DOI: 10.1109/icassp.2010.5496065.

Saatci E. and Akan A. (2010) Respiratory parameter estimation in non-invasive ventilation based on generalized Gaussian noise models. Signal Processing, Vol. 90, Iss. 2, pp. 480-489. DOI: 10.1016/j.sigpro.2009.07.015.

Chan J., Choy B., Walker S. On the Estimation of the Shape Parameter of a Symmetric Distribution. Journal of Data Science, 2020, vol. 18, no. 1, pp. 78-100.doi: 10.6339/JDS.202001_18(1).0004.

Komunjer I. (2007) Asymmetric power distribution: Theory and applications to risk measurement. Journal of Applied Econometrics, Vol. 22, Iss. 5, pp. 891-921. DOI: 10.1002/jae.961.

Olosunde A. A., Soyinka A. T. (2019) Interval Estimation for Symmetric and Asymmetric Exponential Power Distribution Parameters. Journal of the Iranian Statistical Society, Vol. 18, Iss. 1, pp. 237-252. DOI: 10.29252/jirss.18.1.237.

Dominguez-Molina J. A., González-Farías G., Rodríguez-Dagnino R. M. (2003) A practical procedure to estimate the shape parameter in the generalized Gaussian distribution. ResearchGate.

Olosunde A. A. (2013) On Exponential Power Distribution and Poultry Feeds Data: a Case Study. Journal of The Iranian Statistical Society, vol. 12, no. 2, pp. 253-270.

Duda J. (2020) Adaptive exponential power distribution with moving estimator for nonstationary time series. ResearchGate, 6 p. doi: 10.13140/RG.2.2.26797.64483.

Zakharov I. P., Shtefan N. V. (2002) Opredeleniej effektivnyh ocenok centra raspredelenija pri statisticheskoj obrabotke rezul'tatov nabljudenij [Definition of effective distribution center value at statistical processing of measurement observations]. Radioelektronika ta informatyka - Radioelectronics and informatics , vol. 3, no. 20, pp. 97-99.

Warsza Z. L., Galovska M. (2009) About the best measurand estimators of trapezoidal probability distributions. Przeglad Elektrotechniczny, vol. 85, no. 5, pp.86–91.

Mineo A. M., Ruggieri M. (2005) A Software Tool for the Exponential Power Distribution: The normalp Package. Journal of Statistical Software, vol. 12, iss. 4, pp. 1-24. doi: 10.18637/jss.v012.i04.

Kunchenko Yu. P. (2002) Polynomial parameter estimations of close to Gaussian random variables . Aachen, Shaker Verlag, 396 p.

Zabolotnii S. V., Chepynoha A. V., Bondarenko Y. Y. and Rud M. P. (2018) Polynomial parameter estimation of exponential power distribution data. Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, Iss. 75, pp. 40-47. DOI: 10.20535/radap.2018.75.40-47.

Warsza Z. L. and Zabolotnii S. W. (2017) A Polynomial Estimation of Measurand Parameters for Samples of Non-Gaussian Symmetrically Distributed Data. Automation 2017, pp. 468-480. DOI: 10.1007/978-3-319-54042-9_45.

Warsza Z. L., Zabolotnii S. W. (2017) Uncertainty of measuring data with trapeze distribution evaluated by the polynomial maximization method. Przemysl Chemiczny, no. 12, pp. 68–71. doi: 10.15199/62.2017.12.6.

Zabolotnii S. V., Kucheruk V. Yu., Warsza Z. L. (2018) Polynomial Estimates of Measurand Parameters for Data from Bimodal Mixtures of Exponential Distributions. Bulletin of the Karaganda University. Physics Series., vol. 2, no. 90, pp. 71-80.




How to Cite

Zabolotnii, S. V., Chepynoha, A. V., Chorniy, A. M. and Honcharov, A. V. . (2020) “ Сomparative Analysis of Polynomial Maximization and Maximum Likelihood Estimates for Data with Exponential Power Distribution”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, (82), pp. 44-51. doi: 10.20535/RADAP.2020.82.44-51.



Theory and Practice of Radio Measurements