Truncated estimating parameters of additive mixture of radio signal and kurtosis non-Gaussian noise
DOI:
https://doi.org/10.20535/RADAP.2015.61.40-49Keywords:
truncated stochastic polynomials, Polynomial Maximization Method, non-Gaussian noiseAbstract
Introduction. Classical methods based on the use of Gaussian random signal model has its advantages and disadvantages. Therefore, Maximum Likelihood Method have not found wide implementation due to the high computational complexity. Method of Moments does not have the properties of asymptotic optimality, although it leads to a relatively simple calculations. In general, the methods do not consider more complex structure of real noise. Therefore the accuracy of signal processing algorithms may be insufficient. The aims and objectives of research. The aim of the paper is to adapt Methods of Polynomial Maximization (MPM) and Truncated Stochastic Polynomial Maximization (MTSPM) for joint estimation of radiosignal and kurtosis non-Gaussian noise parameters. The Objectives of research is to develop effective methods of statistical data processing, which would allow increasing the accuracy and speed of signal processing. Construction of the Polynomial algorithms for joint estimating. To find joint estimates the systems of equations are constructed. To estimate the radiosignal frequency is used MPM and the noise variance – MTSPM. Statistical properties of the radiosignal frequency estimates. To study the statistical properties of radiosignal parameter estimates the asymptotic dispersions of estimates are calculated. Comparison of the asymptotic dispersion of radiosignal frequency estimates and a graphical representation of the results. The efficiency of polynomial estimation algorithms increases with the stochastic polynomial degree and as the values of coefficients of kurtosis approach the tolerance range limit. Conclusion. The effective methods of signal processing to enhance the accuracy and speed of non-Gaussian signals processing are developed. The results can be used to improve the estimation accuracy of radiosignal parameters in radiolocation, radio navigation and other areas, where the accuracy of signal processing algorithms plays an important role.References
Перелік посилань
Трифонов А. П. Совместное различение сигналов и оценка их параметров на фоне помех / А. П. Трифонов, Ю. С. Шинаков. – М. : Радио и связь, 1986. – 264 с.
Van Trees, H. L. Detection Estimation and Modulation Theory / H. L. Van Trees, K. L. Bell, Z. Tiany; 2nd ed. – John Wiley & Sons, 2013. – 1176 p.
Sobolev V. S. Maximum-likelihood estimates of the frequency of signals of laser Doppler anemometers / V. S. Sobolev, F. A. Zhuravel’ // Journal of Communications Technology and Electronics. – 2014. – Vol. 59, Issue 4. – P. 294–301. doi: 10.1134/S1064226914030103
Krupiński R. Modified Moment Method Estimator for the Shape Parameter of Generalized Gaussian Distribution for a Small Sample Size / R. Krupiński // Computer Information Systems and Industrial Management. – 2013. – Vol. 8104. – P. 420–429. doi: 10.1007/978-3-642-40925-7_39
Kunchenko Y. P. Polynomial Parameter Estimations of Close to Gaussian Random Variables / Y. P. Kunchenko. – Aachen: Shaker Verlag, 2002. – 396 p.
Малахов А. Н. Кумулянтный анализ негауссовских процессов и их преобразований / А. Н. Малахов – М.: Сов. радио, 1979. – 376 с.
Гончаров А.В. Оцінка амплітуди радіосигналу спільно з усіченим оцінюванням параметрів адитивної асиметричної завади / Гон-чаров А.В., Уманець В. М., Бондаренко А.В. // Вісник ЧДТУ – Черкаси: ЧДТУ, 2013. – № 4. – С. 83–88.
Палагін В.В. Комп’ютерне моделювання поліноміальних двофункціональних правил обробки радіосигналів на фоні негаусівських завад / Палагін В.В., Гончаров А.В., Уманець В.М. // PREDT-2013: праці IV міжнародної науково-практичної конференції, 23-25 жовтня 2014 р.: тези доп. – Чернівці: ЧНУ імені Юрія Федьковича, 2014. – С. 114–115.
Палагін В. В. Комп’ютерне моделювання поліноміальних алгоритмів розрізнення радіосигналів та оцінювання їх параметрів / Палагін В. В., Гончаров А. В., Уманець В. М. // Східно-Європейський журнал передових технологій. – 2014. – № 5. – С. 31–39. doi: 10.15587/1729-4061.2014.28006.
References
Trifonov A. P., Shinakov, Y .S. Joint discrimination of signals and estimation of their parameters at background noise. Moscow, USSR: Radio and Communications, 1986, 264 p.
Van Trees H. L., Bell K. L., Tiany Z. Detection Estimation and Modulation Theory. John Wiley & Sons, 2013, 1176 р.
Sobolev V. S. Maximum-likelihood estimates of the frequency of signals of laser Doppler anemometers, Journal of Communications Technology and Electronics, 2014, – 59(4), рр. 294–301. doi: 10.1134/S1064226914030103
Krupiński R. Modified Moment Method Estimator for the Shape Parameter of Generalized Gaussian Distribution for a Small Sample Size. Computer Information Systems and Industrial Management, 2013, pp. 420–429. doi: 10.1007/978-3-642-40925-7_39
Kunchenko Yu. P. Polynomial Parameter Estimations of Close to Gaussian Random Variables. Aachen: Shaker Verlag, 2002, 396 p.
Malakhov A. N. Cumulant analysis of non-Gaussian processes and their transformations. Moscow, USSR: Radio and Communications, 1979, 376 p.
Honcharov A. V., Umanets V. M. Joint estimation of radio signal amplitude and additive skewness noise parameter. Visnyk CHDTU, 2013, – (2), pp. 111–118.
Palahin V. V., Honcharov A. V., Umanets V. M. Computer modeling of joint algorithms of distinction of radio signals and estimation of their parameters at non-gaussian interferences, 2013, pp. 109–110.
Palahin V. V., Honcharov A. V., Umanets V. M. Computer simulation of polynomial algorithms of radio signals distinction and estimating their parameters. East Europe Journal, 2014. – № 5, pp. 31–39. doi: 10.15587/1729-4061.2014.28006.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).