Standing out of Radiosignals on the Background of Noises Based on the Effect of Stochastic Resonance

Authors

DOI:

https://doi.org/10.20535/RADAP.2021.86.39-44

Keywords:

stochastic resonance, stochastic resonator, signal-to-noise ratio, matched filter, dispersion, white Gaussian noise, radiosignal, linear frequency modulated signal, phase-code-manipulated signal, noise factor

Abstract

The main and most difficult problem of signals receiving is the problem of noise immunity to find the best methods of receiving radio signals in the presence of interference.  

The analysis of radio signals standing out with the help of stochastic resonance effect are given. The linear frequency modulated and phase-code-manipulated signals are considered as an object of research. Linear frequency modulated phase-code-manipulated signals are widely used in radar and telecommunication systems.

The phenomenon of stochastic resonance is a type of cooperative effect of noise and weak signal under a certain non-linear circumstance, in which the weak signal can be amplified and detected by a suitable amount of noise. The stochastic resonance is observed, quantified, and described in a plethora of physical and biological systems, including neurons. Stochastic resonance is an interdisciplinary concept and is found in various fields of science from sociology to medicine and physics.

The amplitude spectrum of the radio signal and the process at the output of the stochastic resonator are calculated. The possibility of the signal amplifying and noise reducing at the stochastic resonator output is shown.

Dependence of signal-to-noise ratio at stochastic resonance output is determined for signal model in form of additive mixture of radio signal and white Gaussian noise at different values of variance of input noise. It is shown that at any noise dispersion value the signal-to-noise ratio at the stochastic resonator output is higher than at the output of the matched filter. Matched filter is derived to maximize signal to noise ratio.

In addition, the dependence of the noise factor of the stochastic resonator on the noise dispersion at the input is determined. The noise factor is greater than one and increases with the input noise level.

The stochastic resonance effect is shown to provides the standing out of the radio signal against the background white Gaussian noise.

References

Перечень ссылок

Sklar B. Digital communications. Fundamentals and Applications. Second Edition / University of California, Los Angeles. 2001. 1104 p.

Ж. Макс. Методы и техника обработки сигналов при физических измерениях: В 2-х томах / Пер. с франц. — М.: Мир, 1983. — Т. 1.

Anishchenko V. S. Local and global approaches to the problem of Poincaré recurrences. Applications in nonlinear dynamoics / Anishchenko V.S., Boev Ya.I., Semenova N.I., Strelkova G.I. // Physics Reports. — 2015. — Volume 587. — P. 1-39. doi:10.1016/j.physrep.2015.05.004.

Barbini L. Weak signal detection based on two dimensional stochastic resonance / L. Barbini, M.O.T. Cole, A.J. Hillis, J.L. du Bois. // 2015 23rd European Signal Processing Conference (EUSIPCO). — 2015. — P. 2147–2151. DOI: 10.1109/EUSIPCO.2015.7362764.

Anishchenko V. S. Stochastic resonance: noise-enhanced order / Anishchenko V. S., Neiman A. B., Moss F., Schimansky-Geier L. // Physics-Uspekhi. — 1999. — 42(1)/ — P. 7-34. doi:10.1070/PU1999v042n01ABEH000444/meta.

Moses J. M., Ayyagari R. A Brief Survey of Stochastic Resonance and Its Application to Control // IFAC Proceedings Volumes. — 2014. — Vol. 47, Iss. 1. — P. 313-320. doi:10.3182/20140313-3-IN-3024.00223.

Chen H., Varshney P. K., Kay S. M., Michels J. H. Theory of the Stochastic Resonance Effect in Signal Detection: Part I—Fixed Detectors // IEEE Transactions on Signal Processing. — Vol. 55, No. 7. — P. 3172-3184. doi: 10.1109/TSP.2007.893757.

Батурин Н. Г., Гомозов В. И., Зюзин А. В. Измерение параметров линейно-модулированных сигналов и их нестабильносте / Ярославль: Изд-во «Норд». — 2004. — 176 с.

Гомозов А. В., Гомозов В. И., Ермаков Г. В., Титов С. В. Фокусировка электромагнитного излучения и ее применение в радиоэлектронных средствах СВЧ / Под ред. В. И. Гомозова, Харьков:КП «Городская типография». — 2011. — 330 с.

Волощук Ю. І. Сигнали та процеси у радіотехніці: Підручник для студентів вищих навчальних закладів / Харків: ''Компанія СМІТ''. — 2003. — 444 с.

Култышев Н. А. Оценка помехозащищенности радиолокационных систем обзора морской поверхности для разных типов антенн радиолокационных систем // Радиопромышленность. — 2018. — No 2. — С. 40–47. https://doi.org/10.21778/2413-9599-2018-2-40-47.

А. Ф. Романенко, Г. А. Сергеев. Вопросы прикладного анализа случайных процессов / М: «Сов. Радио». — 1968. — 255 с.

Антипенский Р. Разработка моделей сложных сигналов / Компоненты и технологии, №7. — 2007. — С. 157-160.

References

Sklar B. (2001). Digital communications. Fundamentals and Applications. Second Edition. University of California, Los Angeles, 1104 p.

Maks Zh. (1983). Metody i tekhnika obrabotki signalov pri fizicheskih izmereniyah: V 2-h tomah. [Max J. Methods and techniques of signal processing in physical measurements]. M.: Mir, Vol. 1. [In Russian, translation from french].

Anishchenko V. S., Boev Ya. I., Semenova N. I., Strelkova G. I. (2015). Local and global approaches to the problem of Poincaré recurrences. Applications in nonlinear dynamoics. Physics Reports, Vol. 587, pp. 1-39. doi:10.1016/j.physrep.2015.05.004.

Barbini L., Cole M. O. T., Hillis A. J., du Bois J. L. (2015). Weak signal detection based on two dimensional stochastic resonance. 2015 23rd European Signal Processing Conference (EUSIPCO), pp. 2147-2151, doi: 10.1109/EUSIPCO.2015.7362764.

Anishchenko V. S., Neiman A. B., Moss F., Schimansky-Geier L. (1999). Stochastic resonance: noise-enhanced order. Physics-Uspekhi, Vol. 42, No.1, pp. 7-34. DOI: 10.1070/PU1999v042n01ABEH000444.

Moses J. M., Ayyagari R. (2014). A Brief Survey of Stochastic Resonance and Its Application to Control. IFAC Proceedings Volumes, Vol. 47, Iss. 1, pp. 313-320. doi:10.3182/20140313-3-IN-3024.00223.

Chen H., Varshney P. K., Kay S. M., Michels J. H. (2007). Theory of the Stochastic Resonance Effect in Signal Detection: Part I—Fixed Detectors. IEEE Transactions on Signal Processing, Vol. 55, No. 7, pp. 3172-3184. DOI: 10.1109/TSP.2007.893757.

Baturin N. G., Gomozov V. I., Zyuzin A. V. (2004). Izmerenie parametrov linejno-modulirovannyh signalov i ih nestabil'noste. Yaroslavl': Izd-vo «Nord». 176 s. [In Russian].

Gomozov A. V., Gomozov V. I., Ermakov G. V., Titov S. V. (2011). Fokusirovka elektromagnitnogo izlucheniya i ee primenenie v radioelektronnyh sredstvah SVCH. Pod red. V. I. Gomozova. Har'kov: KP «Gorodskaya tipografiya», 330 s. [In Russian].

Voloshchuk Yu. I. (2003). Syhnaly ta protsesy u radiotekhnitsi: Pidruchnyk dlia studentiv vyshchykh navchalnykh zakladiv. Kharkiv: ''Kompaniia SMIT'', 444 s. [In Ukrainian].

Kultyshev N. A. (2018). ESTIMATION OF JAMMING PROTECTION OF RADAR LOCATION SYSTEMS OF SEA SURFACE REVIEW FOR DIFFERENT TYPES OF ANTENNAS RADAR. Radio industry (Russia), Vol. 28, Iss. 2, pp. 40-47. doi: 10.21778/2413-9599-2018-2-40-47. [In Russ.]

Romanenko A. F., Sergeev G. A. (1968). Voprosy prikladnogo analiza sluchajnyh processov. M: «Sov. Radio», 255 s. [In Russian].

Antipenskij R. (2007). Razrabotka modelej slozhnyh signalov. Komponenty i tekhnologii, No. 7, pp. 157-160. [In Russian].

Published

2021-09-30

How to Cite

Харченко , О. И. and Карташов, В. М. (2021) “Standing out of Radiosignals on the Background of Noises Based on the Effect of Stochastic Resonance”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, (86), pp. 39-44. doi: 10.20535/RADAP.2021.86.39-44.

Issue

Section

Telecommunication, navigation, radar systems, radiooptics and electroacoustics