Using Walsh Functions for Increase the Stealth Communication in a Digital Radio Channel
DOI:
https://doi.org/10.20535/RADAP.2021.85.27-32Keywords:
radiation detection, radio communication, wideband signal, orthogonal signals, Walsh functionsAbstract
Introduction. The use of wideband signals in telecommunication systems provides the desired speed of digital data transmission on radio channels of ultrahigh frequencies range with the required quality. In this case, in the range of ultrahigh frequencies, it is possible to provide a sufficiently low probability of detecting wideband signals, which corresponds to the needs of cybersecurity and data confidentiality.
Due to the optimal processing in wideband receivers, the power of the useful signal can be increased by of the signal base. A decrease in the spectral power density of a wideband signal reduces the detection range of the radiation of a broadband transmitter, as compared to a narrowband one with the same transmitter power. Further improvement of the stealth communication is possible with an increase in the base of the signal with a simultaneous decrease in the transmitter power.
Purpose of work. Evaluation of the possibility of using wideband signals in the shot wave range for communication digital data and determination the probability of the detection the transmitter radiation with lowing power by means of frequency monitoring.
Presentation of research material. Let the transmission of a voice signal with the upper frequency of the spectrum of 3,9 kHz used the analog-digital signal conversion with 256 quantization levels and a sampling period of 128 µs. Each 8 bits match a specific Walsh function in the encoder. With an elementary symbol duration of 0,5 µs, the signal spectrum is expanded to 2 MHz, and the signal base is 256. To organize multichannel transmission is supposed to use frequency separation of the channels with a phasemanipulation of the carrier frequency. This is not need account the mutual correlation the signals of other wideband channels, which use identical Walsh functions. Qualitative transmission of information, with binary eight-bit pulse-code modulation and the simultaneous use of Walsh orthogonal functions is provided by optimal signal / noise ratio at the input of the demodulator of the pulse-code modulation 15 dB. Consequently, an assessment of the possibility of transmitting information with specified quality indicators using a wideband signal is reduced to the calculation of the signal / noise ratio for a certain range of communication. The calculation results show that at the input of the demodulator of the pulse-code modulation of the wideband radio communication tool provides the necessary signal / noise ratio at a distance from the transmitter, which slightly exceeds 6 km. In addition, with a decrease the power transmitter’s in ten times, the range of the wideband radio communication decreases to 3 km. Verification of the possibility of detecting a radiation the means of frequency monitoring is to determine the signal / noise ratio that will be created by a wideband radio transmitter at the input of the frequency monitoring receiver. The wideband radio transmitter with a power of 5W creates at the entrance of the receiver of frequency monitoring at a distance of 1 km signal ratio / noise 16,3 dB. In this case, the conventional probability of the correct detection of the signal with an unknown initial phase and the amplitude is at least 0,8. Note, that a narrowband transmitter with the same power, at a distance of 1 km creates a signal / noise ratio of 36,3 dB at the input of the frequency monitoring receiver. When the transmitter power is reduced to 0,1 W, the transmission of information with the specified quality indicators is ensured over a distance of up to 2 km. In this case, the conditional probability of correct detection of the signal by the frequency monitoring receiver reaches a value of less than 0,5 already at a distance of 0,5 km. Despite the possibility of detecting a radio broadband signal, any other receiver that does not have a priori information about the information signal encoding parameters will not be able to restore the information contained in the signal.
Conclusions. The use of wideband signals with a large base degrades the conditions for detecting the emission of the transmitter compared to narrowband means of communication. A further decrease in the probability of detecting the emission of a wideband signal is possible by decreasing the transmitter's power.
References
Перелік посилань
Huilin Xu, Liuqing Yang. Ultra-wideband technology: Yesterday, today, and tomorrow. // IEEE Radio and Wireless Symposium. — 2008. — P. 715-718. DOI: 10.1109/RWS.2008.4463592.
Wang J. J. H.. Stealth Communication Via Smart Ultra-Wide-Band Signal in 5G, Radar, Electronic Warfare, etc.*. // 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting. — 2020. — P. 1825-1826. DOI: 10.1109/IEEECONF35879.2020.9330108.
Adachi F., Garg D. , Takaoka S., Takeda K. Broadband CDMA techniques. // IEEE Wireless Communications. — 2005. — Volume: 12, Issue: 2. — P. 8-18. DOI: 10.1109/MWC.2005.1421924.
LoRa and LoRaWAN: A Technical Overview. Semtech Corporation. — 2020. — P. 1-29.
Hanif M. and Nguyen H. H. Slope-Shift Keying LoRa-Based Modulation. // IEEE Internet of Things Journal. — 2021. — Vol. 8, Iss. 1. — P. 211-221. DOI: 10.1109/JIOT.2020.3004318.
Augustin A., Yi J., Clausen T. H., Townsley W. M. A Study of LoRa: Long Range & Low Power Networks for the Internet of Things. // Sensors. — 2016. — Vol. 16, Iss. 9: 1466. DOI:10.3390/s16091466.
Гришенцев А. Ю., Елсуков А. И., Коробейников А. Г., Сидоркина И. Г. Разработка и модельная реализация приёмопередающего устройства скрытого подшумового обмена широкополосными радиосообщениями // Весник Чувашского университета . — 2017. — №3. — С. 195-206.
Бурляй І. В. Системи радіозв’язку та їх застосування оперативно-рятувальною службою / І.В. Бурляй, Б.Б. Орел, О.М. Джулай: Посібник. — Чернігів: РВК «Деснянська правда», 2007. — 288 с.
Пристрій приймання широкосмугових сигналів з лінійною частотною модуляцією: пат. Україна: МПК Н04L 27/14 / Андреєв О.В., Мартинчук П.П., Полещук І.І., Хоменко М.Ф.; власник Житомирський державний технологічний університет; № 118728; заявл. 14.07.2017; опубл. 25.02.2019, Бюл. № 4. — 4 с.
Андреєв О. В. Широкосмуговий засіб радіозв’язку короткохвильового діапазону для передачі аналогових вузькосмугових сигналів / О.В. Андреєв, П. П. Мартинчук, І.І. Полещук, М.Ф. Хоменко // Вісник ЖДТУ №3 (78), Житомир: ЖДТУ. —2016. С. 49-55.
Андреєв О. В. Короткохвильовий цифровий широкосмуговий засіб радіозв’язку / О.В. Андреєв, В.В. Ципоренко, Є.О. Андреєва, О.Р. Рихальський // Вісник ЖДТУ №1 (83), Житомир: ЖДТУ. — 2019. С. 197-200. DOI: 10.26642/tn-2019-1(83)-197-200.
Дубина, О. Ф., Нікітчук, Т. М. Коцюба, І. Г. (2019) Алгоритм вибору завадостійких кодів для роботи систем радіозв’язку в короткохвильовому діапазоні, Вісник НТУУ "КПІ". Серія Радіотехніка, Радіоапаратобудування , 0(77), с. 47-52. doi: 10.20535/RADAP.2019.78.47-52.
Ципоренко В. В. Анализ точности беспоискового цифрового метода корреляционно-интерферометрического пеленгования с двухмерной корреляционной обработкой пространственного сигнала / В. В. Ципоренко, В. Г. Ципоренко, В. В. Чухов, А. В. Андреев // Вісник Національного технічного університету України "Київський політехнічний інститут". Серія : Радіотехніка. Радіоапаратобудування. — 2018. — Вип. 72. — С. 23-31.
Варакин Л. Е. Системы связи с шумоподобными сигналами / Л.Е. Варакин. — М.: Радио и связь, 1985. – 384 с.
Казаринов Ю. М. Радиотехнические системы: учеб. для вузов / Ю. М. Казаринов – М.: Академия, 2008. – 592 с.
Пілінський В. В. Технічна електродинаміка та поширення радіохвиль: навчальний посібник для студентів напряму підготовки 6.050903 «Телекомунікації» / В. В. Пілінський. – Київ : Кафедра, 2014. – 336 с.
Recommendation ITU-RP.372-13 (09/2016). Radio noise. International Telecommunication Union.
References
Huilin Xu and Liuqing Yang. (2008). Ultra-wideband technology: Yesterday, today, and tomorrow. 2008 IEEE Radio and Wireless Symposium, pp. 715-718. DOI: 10.1109/RWS.2008.4463592.
Wang J. J. H.. (2020). Stealth Communication Via Smart Ultra-Wide-Band Signal in 5G, Radar, Electronic Warfare, etc.*. 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, pp. 1825-1826. DOI: 10.1109/IEEECONF35879.2020.9330108.
Adachi F., Garg D., Takaoka S. and Takeda K. (2005). Broadband CDMA techniques. IEEE Wireless Communications, Vol. 12, Iss. 2, pp. 8-18. DOI: 10.1109/MWC.2005.1421924.
LoRa and LoRaWAN: A Technical Overview. (2020). Semtec Corporation, pp. 1-29.
Hanif M. and Nguyen H. H. (2021). Slope-Shift Keying LoRa-Based Modulation. IEEE Internet of Things Journal, Vol. 8, Iss. 1, pp. 211-221. DOI: 10.1109/JIOT.2020.3004318.
Augustin A., Yi J., Clausen T. H., Townsley W. M. (2016). A Study of LoRa: Long Range & Low Power Networks for the Internet of Things. Sensors, Vol. 16, Iss. 9: 1466. DOI:10.3390/s16091466.
Grishentcev A., Elsukov A., Korobeynikov A., Sidorkina I. (2017). Development and model implementation of the transceiving device of the hidden subnoise exchange by broadband radio signals. Vestnik Chuvashskogo universiteta, Vol. 3, pp. 195-206. [In Russian].
Burliai I. V., Orel B. B., Dzhulai O. M. (2007). Radio communication systems and their use by the rescue service. Manual [Systemy radiozviazku ta yikh zastosuvannia operatyvno-riatuvalnoiu sluzhboiu. Posibnyk]. Chernihiv: RVK «Desnianska pravda», 288 p. [In Ukrainian].
Andreev O. V., Martinchuk P. P., Poleschuk I. I., Khomenko M. F. (2019). Device for receiving broadband signals with linear frequency modulation: Patent Ukraine: MPK H04L 27/14. Owner Zhytomyr State Technological University, № 118728 , Bul. 4, 4 p.
Andreyev O. V., Martynchuk P. P., Poleschuk I. I., Khomenko N. F. (2016). Broadband radio communication of short-wave band for transmission of analogue narrowband signals The Journal of Zhytomyr State Technological University / Engineering, Vol. 3(78), pp. 49-55. [In Ukrainian].
Andreev O. V., Tsyporenko V.V., Andreeva Ye. O., Ryhalsky O. R. (2019). The shortwave digital broadband radio communication device. The Journal of Zhytomyr State Technological University / Engineering, Vol. 1(83), pp. 197–200. DOI: 10.26642/tn-2019-1(83)-197-200. [In Ukrainian].
Dubyna O. F., Nikitchuk T. N., Kotsiuba I. H. (2019). Algorithm for the selection of error-correcting codes for the operation of radio communication systems in the shortwave range. Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, Vol. 77, pp. 47-52. doi: 10.20535/RADAP.2019.78.47-52. [In Ukrainian].
Tsyporenko, V. V., Tsyporenko, V. G., Chukhov, V. V., Andreiev, O. V. (2018). Analysis of Accuracy of Direct Digital Method of Correlative-Interferometric Direction Finding with Two-Dimensional Correlative Processing of Spatial Signal. Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, Vol. 72, pp. 23-31. doi: 10.20535/RADAP.2018.72.23-31. [In Russian].
Varakyn L. E. (1985). Communication systems with noise-like signals [Sistemyi svyazi s shumopodobnyimi signalami] . M.: Radyo y sviaz, 384 p. [In Russian].
Kazarinov Yu. M. (2008) Radio engineering systems: textbook for universities [Radiotehnicheskie sistemyi: ucheb. dlya vuzov] . M.: Akademiya, 592 p. [In Russian].
Pilinskyi V. V. (2014). Technical electrodynamics and propagation of radio waves: a textbook for students in the field of training 6.050903 ''Telecommunications'' [Tekhnichna elektrodynamika ta poshyrennia radiokhvyl: navchalnyi posibnyk dlia studentiv napriamu pidhotovky 6.050903 «Telekomunikatsii»]. Kyiv : Kafedra, 336 p. [In Ukrainian].
Recommendation ITU-RP.372-13 (09/2016). Radio noise. International Telecommunication Union.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Tетяна Миколаївна Нікітчук, Олександр Дубина , Олександр Андреєв, Віталій Ципоренко
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).