Analysis of the Efficiency of the Kalman-Type Correlation Algorithm for Tracking of a Small UAV in the Presence of Uncorrelated Interference




unmanned aerial vehicle, correlation algorithm, reference image, Kalman filter, positioning accuracy, probability of tracking failure


The article shows the relevance of the problem of development and analysis of algorithms for tracking small-sized UAVs according to video surveillance. A Kalman-type correlation algorithm for tracking of a small-sized UAV in the presence of spatially uncorrelated interference, which is the most common in practice, is synthesized. In the obtained algorithm, the UAV motion parameters are estimated independently along the axes of a rectangular coordinate system. Positioning accuracy analysis using the correlation algorithm, as well as the correlation algorithm for tracking UAVs based on the Kalman filter, was carried out by statistical modeling in the Matlab programming environment.



Drone market outlook in 2021: industry growth trends, market stats and forecast. Insider.

Forecast: What the commercial drone market will look like by 2022 [Prognoz: Kakim budet rynok kommercheskih dronov k 2022 godu]. Nano News Net. [In Russian].

Sathyamoorthy D. (2015). A Review of Security Threats of Unmanned Aerial Vehicles and Mitigation Steps. ReserchGate, 14 p.

Solodov, A., Williams, A., Al Hanaei, S., & Goddard, B. (2018). Analyzing the threat of unmanned aerial vehicles (UAV) to nuclear facilities. Security Journal, Vol. 31, pp. 305–324. doi:10.1057/s41284-017-0102-5.

Maj Bryan A. (2018). How the Commercial Unmanned Aerial Vehicle Revolution Threatens the US Threshold. Air & Space Power Journal, Spring 2018, pp. 80-95.

Dudush A. S., Tyutyunnik V. A., Reznichenko A. A., Hohoniants S. U. (2018). State of the art and problems of defeat of low, slow and small unmanned aerial vehicles. Modern Information Technologies in the Sphere of Security and Defence, Vol. 31, No. 1, pp. 121-131. doi:10.33099/2311-7249/2018-31-1-121-131. [In Ukrainian].

Makarenko S. I., Timoshenko A. V., Vasilchenko A. S. (2020). Counter Unmanned Aerial Vehicles. Part 1. Unmanned aerial vehicle as an object of detection and destruction. Systems of Control, Communication and Security, Vol. 1, pp. 109-146. DOI: 10.24411/2410-9916-2020-10105. [In Russian].

Sharak D. S., Hizhnyak A. V., Mamchenko A. S. (2019). About justification of image complexing application for automatic support systems in a complex background. Zhurnal Radioelektroniki - Journal of Radio Electronics, No. 5, 12 p. DOI:10.30898/1684-1719.2019.5.2. [In Russian].

Bondarenko V. A., Kaplinskiy G. E., Pavlova V. A. , Tupikov V. A. (2018). Algorithms for electro-optical systems of the complex for protection the restricted areas from unmanned aerial vehicles. Izvestiya SFedU. Engineering sciences, No. 1(195), pp. 15–27. [In Russian].

Tarasov A. S., Nikiforov M. B. (2019). The target tracking video system development. Izvestiya TulGU. Technical sciences, Vol. 2, pp. 187-192. [In Russian].

Alpatov B. A., Babayan P. V., Balashov O. E., Stepashkin A. I. (2008). Methods for automatic detection and tracking of objects. Image processing and control [Metody avtomaticheskogo obnaruzheniya i soprovozhdeniya ob"ektov. Obrabotka izobrazhenij i upravlenie]. M.: Radiotechnics [Radiotekhnika], 176 p. [In Russian].

Vasin V. A., Vlasov I. B., Egorov Yu. M.. et al., ed. Fedorov I. B. (2003). Information technology in radio engineering systems: textbook. manual for universities [Informacionnye tekhnologii v radiotekhnicheskih sistemah: ucheb. posobie dlya vuzov]. M.: Publishing house of MSTU im. N.E. Bauman [Izd-vo MGTU im. N.E. Baumana], 671 p. [In Russian].

Tikhonov V. I., Kharisov V. N. (2014). Statistical analysis and synthesis of radio engineering devices and systems. Textbook for universities. 3rd ed. [Statisticheskij analiz i sintez radiotekhnicheskih ustrojstv i sistem. Uchebnoe posobie dlya vuzov. 3-e izd.]. M.: Hot Line-Telecom [Goryachaya Liniya–Telekom], 608 p. [In Russian].

Ontiveros-Gallardo S. E., Kober V. (2015). Objects tracking with adaptive correlation filters and Kalman filtering. Proc. SPIE 9598, Optics and Photonics for Information Processing IX, 95980X. doi:10.1117/12.2187109.

Ontiveros-Gallardo S. E., Kober V. (2016). Correlation-based tracking using tunable training and Kalman prediction. Proc. SPIE 9971, Applications of Digital Image Processing XXXIX, 997129. doi:10.1117/12.2237964.

Baklitsky V. K. (2009). Correlation-extreme methods of navigation and guidance [Korrelyacionno-ekstremal'nye metody navigacii i navedeniya]. Tver: TO "Book Club" [TO «Knizhnyj klub»], 360 p. [In Russian].

Baringolts, T. V., Domin, D. V., Zhuk, S. Y., & Tsisarzh, V. V. (2019). Adaptive Algorithm of Maneuvering Target Tracking in Complex Jamming Situation for Multifunctional Radar with Phased Antenna Array. Radioelectronics and Communications Systems, Vol. 62(7), pp. 342–355. doi:10.3103/s0735272719070021.




How to Cite

Herasymenko, A. O. and Zhuk, S. Y. (2021) “Analysis of the Efficiency of the Kalman-Type Correlation Algorithm for Tracking of a Small UAV in the Presence of Uncorrelated Interference”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, (87), pp. 22-29. doi: 10.20535/RADAP.2021.87.22-29.



Telecommunication, navigation, radar systems, radiooptics and electroacoustics

Most read articles by the same author(s)

<< < 1 2 3 4 > >>