Influence of the Probability of Object Recognition by a Thermal Imager on the Maximum Observation Range




thermal imager, maximum recognition range, probability of object recognition.


The main function of thermal imaging systems is to detect and recognize objects (targets) with a given probability. One of the main characteristics of such thermal imagers is the maximum range of observation at a given probability of recognition. Many monographs and articles have been devoted to the development and research of goal recognition processes, in which methods of calculating the maximum recognition range (MRR) are proposed, based on Johnson's criterion for a probability of recognition of 50%. For the practical application of thermal imaging surveillance systems (TISS) it is necessary to know the MRR for a given probability of recognition.

The purpose of this article is to develop a method for calculating of the maximum recognition range in real conditions using TISS at a given probability of recognition.

A method for calculating MRR targets in real conditions with a given probability of recognition, which is based on the proposed model of image formation in the thermal imaging monocular, has been developed. It is proposed to consider TISS, the maximum range of which is limited by the contrast of the image or the system's own noise. The model of thermal imaging monocular is considered, which takes into account the parameters of the object of observation, atmosphere, lens, radiation detector, display, eyepiece and visual analyzer of the operator. The proposed model allowed to develop methods for calculating MRR for given recognition probabilities. The equations obtained for the calculation of the MRR for TISS, which are limited by the contrast of the image or the intrinsic noise of the system. An example of calculating the MRR of a thermal imaging monocular is considered.

Author Biography

V. G. Kolobrodov, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine

Колобродов В. Г., д.т.н., професор кафедри оптичних та оптико-електронних приладів



Michael Vollmer and Klaus-Peter Mollman. (2018). Infrared Thermal Imaging: Fundamentals, Research and Applications, 2-nd Edition. Wiley – VCH, 794 p.

Driggers R. G., Friedman M. H., Nichols J. (2012). Introduction to Infrared and Electro-Optical Systems, Second Edition (Artech Optoelectronics and Applied Optics). Artech House (USA), 599 p.

Norbert Schuster, Valentin G. Kolobrodov. (2004). Infrarotthermographie: Zweite, überarbeitete und erweiterte Ausgabe. WILEY-VCH, 356 p. DOI:10.1002/9783527624645.

Raghu V. Prakash (ed.) (2012). Infrared Thermography. . IntechOpen, 248 p. DOI: 10.5772/1353.

Kolobrodov V. G., Lykholit M. I. (2007). Design of thermal imaging and television surveillance systems [Proektuvannia teploviziinykh i televiziinykh system sposterezhennia]. K.: NTUU «KPI», 364 p. [In Ukrainian].

Keßler S., Gal R. and Wittensteinc W. (2017). TRM4: Range performance model for electro-optical imaging systems. Proceedings of SPIE. Vol. 10178. doi: 10.1117/12.2262543.

Peri´c D., Livada B., Peri´c M. and Vuji´c S. (2019). Thermal Imager Range: Predictions, Expectations, and Reality MDPI. Sensors, 19(15), 3313, pp. 1–23. doi: 10.3390/s19153313.

Herbert Kaplan (2007). Practical Applications of Infrared Thermal Sensing and Imaging Equipment, 3rd ed. SPIE. 236 p. doi: 10.1117/3.725072.

Katkovskyi L. V. (2020). Calculation of parameters of thermal imaging of objects from unmanned aerial vehicles [Raschet parametrov teplovizionnoj s"emki ob"ektov s bespilotnyh avianositelej]. Reports of the Belarusian State University of Informatics and Radio Electronics [Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioelektroniki], Vol. 18 (2), pp. 53–61.

Fritze J., Schlemmer H. (2013). New Thermal Imager for Long Range Surveillance. AMA Conferences, pp. 43–47. DOI: 10.5162/irs2013/i2.5.

Keler S., Pereza J., and Steinerb D. (2019). An intensified camera module for the range performance model TRM4. Proceedings of SPIE, Vol. 11001. doi: 10.1117/12.2518317.

Teaney B. P., Reynolds J. P., Bosq T. W. D., Repasi E. (2015). A TRM4 component for the Night Vision Integrated Performance Model (NV-IPM). Proceedings of SPIE, Vol. 9452. doi: 10.1117/12.2180002.

Chrzanowski K. (2010). Testing thermal imagers. Practical guidebook. Military University of Technology, Warsaw, Poland, 164 p.

Braat J., Torok P. (2019). Imaging Optics. Cambridge university press, 988 p.

Melamed R., Yitzhaky Y., Kopeika N. S., Rotman S. R. (1998). Experimental comparison of three target acquisition models. SPIE, Optical Engineering, Vol. 37(7), pp. 1902–1913. doi: 10.1117/1.602029.

Kolobrodov V. G. (2015). Optimization of lens parameters and microbolometric matrix of thermal imager [Optymizatsiia parametriv obiektyva i mikrobolometrychnoi matrytsi teplovizora]. KPI Science News [Naukovi visti NTUU «KPI»], Vol.1(99), pp. 91–95. [In Ukrainian].



How to Cite

Колобродов, В. Г. (2022) “Influence of the Probability of Object Recognition by a Thermal Imager on the Maximum Observation Range”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, (88), pp. 77-85. doi: 10.20535/RADAP.2022.88.77-85.



Computing methods in radio electronics

Most read articles by the same author(s)