Investigation of Electromagnetic Wave Diffraction at the Edges of the Pyramidal Horn Irradiator of the Antenna, as One of the Causes of Scattering
DOI:
https://doi.org/10.20535/RADAP.2022.89.11-20Keywords:
diffraction of a plane electromagnetic wave, scattering at the edges, pyramidal horn irradiator, effective scattering surfaceAbstract
The solution to modern practical radio engineering problems involves studying the diffraction of a plane electromagnetic wave at military facilities of complex shapes. Usually, such objects include antenna systems. If an electromagnetic wave falls on them, the primary waves can occur (dissipate), refract, and some of the energy can be absorbed. Consequently, the wave structure changes. Problems of this type are quite complex, and even modern calculation methods based on new computer technologies in combination with current numerical methods do not provide sufficient efficiency in the calculation.
To solve such problems, the causes of scattering are analyzed using the example of aperture antennas. One of these reasons is due to the impact of sharp edges, or the edges of the Horn irradiator. It turned out that it can be complicated to understand the influence of individual edges since an expression describing the shape of an edge can depend on several coordinates. Getting new rigorous analytical solutions is also very difficult, especially for three-dimensional bodies. Numerical solutions do not have analytical expressions, so it is impossible to select formulas components describing the influence of individual parameters or parts of the scatter plot. In this regard, developing new heuristic methods based on knowledge of the physical laws of the diffraction phenomenon is of great importance.
Derivation of a formula for calculating the electric (magnetic) components of an electromagnetic field scattered from the edges of the Horn irradiator with a rectangular opening shape in two main causes of a plane electromagnetic wave incident.
Since antennas are a significant source of secondary radiation and contribute significantly to the scattering of military objects, the Radar cross-section (RCS) of the Horn irradiator is considered, taking into account the edges.
To test the obtained expressions, an experiment was performed to measure a single-position RCS, that is if the angle of incidence of the wave coincides with the observation angle for two cases of the incident of a plane wave on the opened Horn. The RCS measurement of the antenna was performed when it was connected to a matched load, a short-circuited output, and an open feeder, provided that the electromagnetic wave is vertically polarized. Theoretical and experimental results satisfactorily coincide not only qualitatively, but also quantitatively.
The results of the article allow us to develop recommendations for accelerating and clarifying numerical calculations when solving various practical problems, to reduce losses in the antenna by reducing the reflection coefficient.
From the point of view of designing new antennas, it is advisable to use methods to suppress reflection from the edges to eliminate edge scattering. It is recommended to use resistive cone loads, coating the edges with absorbing materials, or corrugating the edges of the horn or other antenna openings.
References
Перелік посилань
Jiang W. Research on the Scattering Characteristics and the RCS Reduction of Circularly Polarized Microstrip Antenna / Jiang W., Hong T., and Gong S. X. // Hindawi Publishing Corporation International Journal of Antennas and Propagation. — 2013. — Article ID 735847. — 9 p. http://dx.doi.org/10.1155/2013/735847.
Yusuf Ziya Umul. Diffraction of plane electromagnetic waves by a resistive half-screen for skew incidence / Yusuf Ziya Umul // Journal of the Optical Society of America A. — 2020. — Vol. 37, Issue 1. — Р. 63–69. https://doi.org/10.1364/JOSAA.37.000063 .
Atefeh Sedaghat. Size reduction of a conical horn antenna loaded by multi-layer metamaterial lens / Atefeh Sedaghat, Farzad Mohajeri // IET Microwaves, Antennas & Propagation. — 2022. — P. 91–403. https://doi.org/10.1049/mia2.12255.
Lee J. Shield pattern and scattering reduction scheme using impedance surfaces / Jiyeon Lee, Sanghoon Kim, Aobo Li, Dan Sievenpiper // Journal of Physics D: Applied Physics. — 2021. — Vol. 54, N 47. https://iopscience.iop.org/article/10.1088/1361-6463/ac2173.
Весник М. В. Физическая интерпретация численного решения задачи дифракции электромагнитной волны на плоском идеально проводящем рассеивателе / М. В. Весник // Журнал радиоэлектроники. — 2017. — № 4. http://jre.cplire.ru/jre/apr17/7/text.pdf.
Husnu Deniz Basdemir. Gaussian source beam diffraction by a perfect electromagnetic half-plane / Husnu Deniz Basdemir // Journal of the Optical Society of America A. — 2020. — Vol. 37, Iss. 6. — P. 930–939. https://doi.org/10.1364/JOSAA.389239.
Aydin, E. A. Аn approximate solution for the plane wave diffraction by an impedance strip: Н-polarization / E. A. Aydin, T. İkiz // Technical Journal. — 2016. — Vol. 10, Iss. 3-4. — P. 79-97. https://hrcak.srce.hr/file/253502.
Якимов А. Н. Оценка влияния краевых эффектов на излучение микроволновой антенны / А. Н. Якимов // Труды международного симпозиума «Надежность и качество». — 2020. — T. 1. Cт.31–33.
Chen H.-Y. Tapered impedance loading for suppression of edge scattering / Chen H.-Y., Deng L.-J., Zhou P.-H., Xie J.-L. // IET Microwaves Antennas Propag. — 2011. — Vol. 5, Iss. 14. — P. 1744–1749. https://digital-library.theiet.org/content/journals/10.1049/iet-map.2010.0623.
Сидорчук О. Л. Дифракція плоскої електромагнітної хвилі на рупорній антені / О. Л. Сидорчук // Вісник ЖДТУ. Технічні науки. Житомир. — 2010. — № 2 (53). — С. 167–174. http://vtn.ztu.edu.ua/article/view/71004.
Сидорчук О. Л. Розрахунок ефективності поверхні розсіювання рупорної антени при падінні на неї хвилі довільної форми з застосуванням леми Лоренца / О. Л. Сидорчук // Вісник ЖДТУ. Технічні науки. Житомир. — 2011. — № 2 (57). — С.102–113. http://vtn.ztu.edu.ua/article/view/69781.
Манойлов В. П. Дослiдження електродинамiчних характеристик антени у виглядi вiдкритого кiнця прямокутного хвилеводу iз частковим дiелектричним заповненням та штирем збудження / В. П. Манойлов, В. В. Чухов, Н. М. Каращук // Вiсник ЖДТУ. Технiчнi науки. — 2019. — № 1(83). — С. 219–227. http://vtn.ztu.edu.ua/article/view/171775.
Артюшин Л. М. Удосконалена методика розрахунку антени у виглядi вiдкритого кiнця прямокутного хвилеводу з частковим дiелектричним заповненням та штирем збудження / Л. М. Артюшин, Ю. О. Колос, Н. М. Каращук, Р. О. Авсієвич, Д. В. Коваль // Вісник НТУУ ''КПІ''. Серія Радіотехніка, Радіоапаратобудування. — 2020. — №. 82. — Р. 5–13. DOI: https://doi.org/10.20535/RADAP.2020.82.5-13.
Choi W. Radar absorbing serrated edge for broadband radar cross-section reduction / W. Choi, B. Kwak, Y. Nam // Microw Opt Technol Lett. — 2020. — Vol. 62, Iss. 3. — P. 1112-1116. https://doi.org/10.1002/mop.32152.
References
Jiang W., Hong T., and Gong S. X. (2013). Research on the Scattering Characteristics and the RCS Reduction of Circularly Polarized Microstrip Antenna. Hindawi Publishing Corporation International Journal of Antennas and Propagation, Article ID 735847, 9 p. doi:10.1155/2013/735847.
Yusuf Ziya Umul. (2020). Diffraction of plane electromagnetic waves by a resistive half-screen for skew incidence. Journal of the Optical Society of America A, Vol. 37, Iss. 1, pp. 63–69. doi:10.1364/JOSAA.37.000063.
Atefeh Sedaghat, Farzad Mohajeri. (2022). Size reduction of a conical horn antenna loaded by multi-layer metamaterial lens. IET Microwaves, Antennas & Propagation, рр. 91–403. doi: 10.1049/mia2.12255.
Jiyeon Lee, Sanghoon Kim, Aobo Li, Dan Sievenpiper. (2021). Shield pattern and scattering reduction scheme using impedance surfaces. IOP Publishing Ltd Journal of Physics D: Applied Physics, Vol. 54, Iss. 47.
Vesnik M. V. (2017). Physical interpretation of the numerical solution of the problem of diffraction of an electromagnetic wave on a flat perfectly conducting scatterer [Fizicheskaya interpretatsiya chislennogo resheniya zadachi difraktsii elektromagnitnoy volny na ploskom idealno provodyashchem rasseivatele]. Journal of radio electronics [Zhurnal radioelektroniki], Vol. 4, 31 p. [In Russian].
Husnu Deniz Basdemir. (2020). Gaussian source beam diffraction by a perfect electromagnetic half-plane. Journal of the Optical Society of America A, Vol. 37, Iss.6, pp. 930–939. doi: 10.1364/JOSAA.389239.
Aydin, E. A., İkiz, T. (2016). Аn approximate solution for the plane wave diffraction by an impedance strip: Н-polarization case. Technical Journal [Tehnički glasnik], Vol. 10, Iss.3-4, pp. 79-97.
Yakimov A. N. (2020). Evaluation of the influence of edge effects on microwave antenna radiation [Otsenka vliyaniya krayevykh effektov na izlucheniye mikrovolnovoy antenny]. Proceedings of the International Symposium ''Reliability and Quality'' [Trudy mezhdunarodnogo simpoziuma «Nadezhnost i kachestvo»], Vol. 1, pp. 31–33. [In Russian].
Chen H.-Y., Deng L.-J., Zhou P.-H., Xie J.-L. (2011). Tapered impedance loading for suppression of edge scattering. IET Microwaves, Antennas & Propagation, Vol. 5, Iss. 14, p. 1744–1749. DOI: 10.1049/iet-map.2010.0623.
Sidorchuk O. L. (2010). Plane electromagnetic wave diffraction on horn antenna. ''The Journal of Zhytomyr State Technological University'' / Engineering, Vol. 1, Iss. 2(53). DOI: 10.26642/tn-2010-2(53)%20Т.1-%25p. [In Ukrainian].
Sidorchuk O. L. (2011). Calculation of effective surface of dispersion of megaphone aerial at falling on it of wave of free-form with the use of lemma of Lorenca. ''The Journal of Zhytomyr State Technological University'' / Engineering, No. 2(57), pp. 103–113. doi: 10.26642/tn-2011-2(57)-103-113. [In Ukrainian].
Manoylov V. P., Chukhov V. V. & Karashchuk N. M. (2019). Research of electrodynamics characteristics of antennas in the form of an open end of a rectangular waveguide with partial dielectric filling and excitation pin. ''The Journal of Zhytomyr State Technological University'' / Engineering, No. 1(83), pp. 219–227. doi: 10.26642/tn-2019-1(83)-219-227. [In Ukrainian].
Artiushyn L. M., Kolos Yu. O., Karashchuk N. M., Avsiievych R. О., Koval D. V. (2020). Improved Calculation Method of Antenna in a Form of Open End of a Rectangular Waveguide with Partial Dielectric Filling and an Excitation Pin. Visnyk NTUU KPI Seriia-Radiotekhnika Radioaparatobuduvannia, Vol. 82, pp. 5-13. doi: 10.20535/RADAP.2020.82.5-13. [In Ukrainian].
Choi W., Kwak B., Nam Y. (2020). Radar absorbing serrated edge for broadband radar cross-section reduction. Microw Opt Technol Lett., Vol. 62, Iss. 3, pр. 1112-1116. doi: 10.1002/mop.32152.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Оlha Sydorchuk, Пане Вікторе Залевський
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).