Improved Calculation Method of Antenna in a Form of Open End of a Rectangular Waveguide with Partial Dielectric Filling and an Excitation Pin

Authors

DOI:

https://doi.org/10.20535/RADAP.2020.82.5-13

Keywords:

rectangular waveguide, partial dielectric filling, excitation pin, matching, coaxial waveguide transition, voltage standing wave ratio

Abstract

An improved methodology for calculating an antenna in the form of the open end of a rectangular waveguide with partial dielectric filling (PDF) and an excitation pin is introduced.
An improvement in the antenna calculation method is provided by simultaneously taking into account the effective dielectric constant of a partial dielectric filling, changing the dimensions of the excitation pin and its displacement relative to the waveguide axis to reduce the geometric dimensions of the waveguide cross section and antenna matching in a certain frequency band enhancement. With this purpose, the value of the effective dielectric constant can be found through the intrinsic transverse vector functions of the hollow waveguide. In particular, the method provides an improved equation (9) to calculate the normalized conductivity of a coaxial waveguide transition from the side of a rectangular waveguide, which allows matching the excitation pin with the coaxial power line by determining (optimizing) its size and position in the waveguide.
The obtained formula is used for normalized shunt conduction introduced by a resistance-loaded pin z1 and z2 , which may be applied in various certain cases when changing the nature of the load resistances z1 and z2 when calculating and designing other antennas and elements of microwave technology.
The graphs of the dependences of the voltage standing wave ratio (VSWR) on the frequency for different radius, length of the excitation pin and its displacement relative to the axis of the rectangular waveguide are presented. With the optimal size and position of the excitation pin, the antenna matching in a certain frequency band is improved (the VSWR is reduced to a level not exceeding 1.18 in the 6-8 GHz frequency band).
Also, the use of PDF allows to reduce the geometric dimensions of the cross section of the waveguide (up to 61% or more) without changing the electric size (for the 6–8 GHz frequency band the cross-sectional size of a rectangular waveguide for a wave H10 is 23 × 10 mm at a relative dielectric constant of plates thick cx =  6 mm, which equals to εr = 1,9). The charts of normalized antenna patterns in the E and H planes are presented.
The reliability and validity of the results obtained is ensured by the convergence of the calculation results under boundary conditions with known results and the convergence of the formulas obtained in units of measurement.
 

Author Biographies

L. M. Artiushyn , State Research Institute of Aviation

Doc. Sci (Tech), Prof.

Yu. О. Kolos , Zhytomyr military institute named after S. P. Korolyov

Cand. of Sci (Tech), Assoc. Prof.

N. M. Karashchuk , Zhytomyr military institute named after S. P. Korolyov

Cand. of Sci (Tech)

R. О. Avsiievych , Zhytomyr military institute named after S. P. Korolyov

Adjunct

D. V. Koval , Zhytomyr military institute named after S. P. Korolyov

Викладач

References

Перелік посилань

Steven Gao. Advanced Antennas for Small Satellites / Gao Steven, Rahmat-Samii Yahya, E. Hodges Richard, Yang Xue-Xia // Proceedings of the IEEE. — 2018. — Vol. 106, No. 3. — pp. 391–403. DOI:10.1109/JPROC.2018.2804664.

Berenguer A. Analysis of Multipactor Effect in a Partially Dielectric-Loaded Rectangular Waveguide / A. Berenguer, Á. Coves, F. Mesa, E. Bronchalo, B. Gimeno // IEEE Transactions on Plasma Science. — 2019. — Vol. 47, No. 1. — pp. 259–265. DOI:10.1109/TPS.2018.2880652.

Nefyodov E. I. Electromagnetic Fields and Waves: Microwave and mmWave Engineering with Generalized Macroscopic Electrodynamics /E. I.Nefyodov, S. M. Smolskiy. — Textbooks in Telecommunication Engineering, 2019. — 315p. ISBN:978-3-319-90847-2.

Nefyodov E. Transmission lines of microwave and mm-wave ranges: computerized lecture course / E.Nefyodov,,B. Kliuev. — Textbook. LAP LAMBERT Academic Publishing GmbH & Co., Saarbrucken, Germany, 2016. — 544 p.

Гольдштейн Л. Д. Электромагнитные поля и волны / Гольдштейн Л.Д., Зернов Н.В. — Москва: Сов. радио, 1971. — 615 с.

Shcherbinin V. I. Cutoff Frequencies of a Dielectric-Loaded Rectangular Waveguide With Arbitrary Anisotropic Surface Impedance / V. I. Shcherbinin, B. A. Kochetov, A. V. Hlushchenko, V. I. Tkachenko // IEEE Transactions on Microwave Theory and Techniques. — 2018. — Vol. 67, No. 2. — pp. 577–583. DOI: 10.1109/TMTT.2018.2882493.

Shcherbinin V. I. HE-and EH-hybrid waves in a circular dielectric waveguide with ananisotropic impedance surface / V. I. Shcherbinin, G. I. Zaginaylov, V. I. Tkachenko // Problems of Atomic Science and Technology. — 2015. — Vol. 98, No. 4. — pp. 89–93.

Антенны и устройства СВЧ. Расчет и проектирование антенных решеток и их излучающих элементов /Воскpесенский Д. И., Грановская Р. А., Гостюхин В. Л., Филиппов В. С. — Москва: Сов. радио, 1972. — 320 с.

Егоров Ю. В. Частично заполненные прямоугольные волноводы/ Ю. В. Егоров. — Москва: Cов. Радио, 1967. — 216 с.

Вайнштейн В. А. Электромагнитные волны/В. А. Вайнштейн. – Москва: Радио и связь, 1988. — 436 с.

Donchenko A. V. Measurements of the Permittivity of Materials Using the Double-Ridged Waveguide / A.V. Donchenko, G.F. Zargano, V.V.Zemlyakov // 14th International Scientific-Technical Conference APEIE, Novosibirsk. — 2018. — pp. 29–32.

Donchenko A. V. Hybrid types of waves in the ridged waveguide with the piecewise-layered dielectric filling / A. V. Donchenko, G. F. Zargano // 2016 International Conference on Actual Problems of Electron Devices Engineering (APEDE), Saratov. — 2016. — pp. 1–6. DOI: 10.1109/APEDE.2016.7878892.

Манойлов В. П. Розрахунок хвилеводів з частковим діелектричним заповненням / В.П. Манойлов , В.В. Чухов// Вісник НТУУ „КПІ”. Радіотехніка. Радіоапаратобудування. — 2006. — Вип. 33. — С. 91–100.

Іванов В. О. Теорія електромагнітного поля : підручник / В. О. Іванов, Є. І. Габрусенко, Л. В. Сібрук. — Київ : НАУ, 2017. — 334 с.

Кочин В. Н. Моделирование несимметричного вертикального вибратора конечной толщины при осесимметричном возбуждении / В. Н. Кочин // Радиофизика и радиоастрономия. — 2002. — Т. 7, № 1. — С. 17–28.

Айзенберг Г. З. Антенны ультракоротких волн / Г. З. Айзенберг. — Москва: Связьиздат, 1957. — 699 с.

Лебедев И. В. Техника и приборы СВЧ / И. В. Лебедев. — Москва: Высш. школа, 1970. — 437 с.

Шаров Г.А. Основы теории сверхвысокочастотных линий передачи, цепей и устройств / Г.А.Шаров. — Москва: Горячая линия – Телеком, 2016. — 470 c.

Фрадин А. З. Антенно-фидерные устройства: учебн. пособие. / А. З. Фрадин. — Москва: Связь, 1977. — 440 с.

Шифрин Я. С. Антенны / Я.С. Шифрин. — Харьков: ВИРТА им. Л. А. Говорова, 1976. — 408 с.

Markina A. Reducing the problem of waveguide excitation by currents in cross-section to a system of integral volterra equations /A.Markina, N. Pleshchinskii, D.Tumakov // 3CTIC. Cuadernos de desarrollo aplicados a las TIC. — 2019. — pp.106–125. DOI:10.17993/3ctic.2019.83-2.106-125.

Манойлов В. П. Дослідження електродинамічних характеристик антени у вигляді відкритого кінця прямокутного хвилеводу із частковим діелектричним заповненням та штирем збудження / В.П. Манойлов, В. В. Чухов, Н.М. Каращук // Вісник ЖДТУ. Технічні науки. — 2019. — № 1 (86). — С. 219–227.

Jentschura U. D. Advanced Classical Electrodynamics. Green Functions, Regularizations, Multipole Decompositions / U. D. Jentschura. – Singapore: World Scientific Publishing Company, 2017. — 370 p. DOI:10.1142/10514.

Данилин А. А. Измерения в радиоэлектронике: учебное пособие / А. А. Данилин, Н. С. Лавренко. — Санкт-Петербург: Идательство “Лань”, 2017. — 408 с.

References

Gao S., Rahmat-Samii Y., Hodges R.E. and Yang X. (2018) Advanced Antennas for Small Satellites. Proceedings of the IEEE, Vol. 106, Iss. 3, pp. 391-403. DOI: 10.1109/jproc.2018.2804664

Berenguer A., Coves A., Mesa F., Bronchalo E. and Gimeno B. (2019) Analysis of Multipactor Effect in a Partially Dielectric-Loaded Rectangular Waveguide. IEEE Transactions on Plasma Science, Vol. 47, Iss. 1, pp. 259-265. DOI: 10.1109/tps.2018.2880652

Nefyodov E. I., Smolskiy S. M. (2019) Electromagnetic Fields and Waves: Microwave and mmWave Engineering with Generalized Macroscopic Electrodynamics. Textbooks in Telecommunication Engineering, 315p. ISBN: 978-3-319-90847-2.

Nefyodov E., Kliuev B. (2016) Transmission lines of microwave and mm-wave ranges: computerized lecture course. Saarbrucken, Germany, Textbook. LAP LAMBERT Academic Publishing GmbH & Co., 544 p.

Goldshtejn L. D., Zernov N.V. (1971) Ehlektromagnitnye polya i volny [Electromagnetic fields and waves]. Moskva, Sov. radio, 615 p.

Shcherbinin V.I., Kochetov B.A., Hlushchenko A.V. and Tkachenko V.I. (2019) Cutoff Frequencies of a Dielectric-Loaded Rectangular Waveguide With Arbitrary Anisotropic Surface Impedance. IEEE Transactions on Microwave Theory and Techniques, Vol. 67, Iss. 2, pp. 577-583. DOI: 10.1109/tmtt.2018.2882493

Shcherbinin V. I., Zaginaylov G. I., Tkachenko V. I. (2015) HE-and EH-hybrid waves in a circular dielectric waveguide with ananisotropic impedance surface. Problems of Atomic Science and Technology, Vol. 98, No. 4., pp. 89–93.

Voskpesenskyi D.Y., Hranovskaia R.A., Hostiukhyn V.L., Fylyppov V.S. (1972) Antennы y ustroistva SVCh. Raschet y proektyrovanye antennykh reshetok y ykh yzluchaiushchykh elementov [Calculation and design of antenna arrays and their radiating elements]. Moskva, Sov. radyo Publ., 320 p.

Ehorov Yu.V. (1967) Chastychno zapolnennye priamouholnye volnovody [Partially Filled Rectangular Waveguides]. Moskva, Sov. radyo Publ., 216 p.

Vainshtein V.A. (1988) Elektromahnytnye volny [Electromagnetic waves]. Moskva, Radyo y sviaz Publ., 436p.

Donchenko A.V., Zargano G.F. and Zemlyakov V.V. (2018) Measurements of the Permittivity of Materials Using the Double-Ridged Waveguide. 2018 XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE), pp. 29–32. DOI: 10.1109/apeie.2018.8546230

Donchenko A.V. and Zargano G.F. (2016) Hybrid types of waves in the ridged waveguide with the piecewise-layered dielectric filling. 2016 International Conference on Actual Problems of Electron Devices Engineering (APEDE), pp. 1–6. DOI: 10.1109/apede.2016.7878892

Manoilov V. P., Chukhov V. V.(2006) Rozrakhunok khvylevodiv z chastkovym dielektrychnym zapovnenniam [Calculation of the waveguied with the shape dielectric fulfills]. Visnyk NTUU KPI Seriia Radiotekhnika Radioaparatobuduvannia, No. 33, pp. 91–100.

Ivanov V. O., Habrusenko Ye. I., Sibruk L. V. (2017) Teoriia elektromahnitnoho polia: pidruchnyk [Electromagnetic field theory: study guide]. Kyiv : NAU, 334 p.

Kochyn V. N. (2002) Modelyrovanye nesymmetrychnoho vertykalnoho vybratora konechnoi tolshchyny pryosesymmetrychnom vozbuzhdenyy [Modeling of an asymmetric vertical vibrator of finite thickness under axisymmetric excitation]. Radio physics and radio astronomy, Vol. 7, No. 1, pp.17–28. DOI:10.15407/rpra.

Aizenberh H. Z. (1957) Antenny ultrakorotkykh voln [VHF Antennas]. Moskva, Sviazyzdat Publ., 699 p.

Lebedev Y. V. (1970) Tekhnyka y prybory SVCh [Microwave equipment and devices]. Moskva, Vyssh. shkola Publ., 437 p.

Sharov H. A. (2016) Osnovy teoryy sverkhvysokochastotnykh lynyi peredachy, tsepei y ustroistv [Fundamentals of the theory of microwave transmission lines, circuits and devices]. Moskva: Horiachaia lynyia – Telekom, 470 p.

Fradyn A. Z. (1977) Antenno-fydernye ustroistva: uchebn. posobye. [Antenna feeder devices: study guide]. Moskva, Sviaz Publ., 140 p.

Shyfryn Ya. S. (1976) Antenny [Antennas]. Kharkov, VYRTA ym. L. A. Hovorova Publ., 408 p.

Markina A., Pleshchinskii N. and Tumakov D. (2019) Reducing the problem of waveguide excitation by currents in cross-section to a system of integral volterra equations. 3C TIC: Cuadernos de desarrollo aplicados a las TIC, pp. 106-125. DOI: 10.17993/3ctic.2019.83-2.106-125

Manoilov V. P., Chukhov V. V., Karashchuk N. M. (2019) Research of electrodynamics characteristics of antennas in the form of an open end of a rectangular waveguide with partial dielectric filling and excitation pin. The Journal of Zhytomyr State Technological University. Series: Engineering, Iss. 1(83), pp. 219-227. DOI: 10.26642/tn-2019-1(83)-219-227

Jentschura U. D. (2017) Advanced Classical Electrodynamics. Green Functions, Regularizations, Multipole Decompositions. Singapore: World Scientific Publishing Company, 370 p. DOI:10.1142/10514.

Danylyn A. A. (2017) Yzmerenyia v radyoelektronyke: uchebnoe posobye [Measurements in Electronics: A Training Manual]. Sankt-Peterburh: Ydatelstvo “Lan”, 408 p.

Published

2020-09-30

How to Cite

Артюшин , Л. М., Колос , Ю. О., Каращук, Н. М. ., Авсієвич , Р. О. . and Коваль , Д. В. (2020) “Improved Calculation Method of Antenna in a Form of Open End of a Rectangular Waveguide with Partial Dielectric Filling and an Excitation Pin”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, (82), pp. 5-13. doi: 10.20535/RADAP.2020.82.5-13.

Issue

Section

Electrodynamics. Microwave devices. Antennas