Improvement of Eddy Current Control System and Response Signal Analysis Model to Increase the Informativeness of Metal Identification

Authors

DOI:

https://doi.org/10.20535/RADAP.2025.101.%25p

Keywords:

electromagnetic properties of metals, eddy current system, STM32H745 microcontroller, identification of metals, mathematical modeling, amplitude-phase method of signal registration, STM32, metal detector

Abstract

The paper examines the results of metal object identification using an eddy current dynamic control system based on the amplitude-phase method of processing the response from the object under study. The article proposes an improved signal-response model of the eddy current dynamic control system. The considered aspects of the implementation of the dynamic control process allowed us to improve the previously proposed analytical model of signal-response description, thanks to which it now takes into account the electrical and magnetic characteristics of metals analytically, and not by approximating the shape of the response signal as in the previous model.

The work emphasizes that an important variable of the model is the speed of passing a metal object over the antenna plane. The speed affects the shape of the signal-response and the information coefficients calculated later. A study was conducted to determine the optimal speed of passing a metal object over the antenna surface, which corresponds to the range of linear speeds of 4...6 m/s.

Metal identification using several different rotation frequencies is better and more accurate, as it allows for a more informative characterization of an unknown new sample and to determine which ones it is most similar to.

The investigation for determine the optimal rotation frequency of metal objects above the antenna plane allowed to increase the informativeness of the system, as evidenced by the increase in the correlation difference when distinguishing metals, for example, copper and other metals, from 10-15% to 20-25%, for example, tantalum from 8-12% to 15-20%, and cobalt from 10-12% to 20%.

References

References

1. Positive Material Identification. Elvatech Ltd. Available online, data access: june 2025.

2. Abramovych, A. О., Agalidi, Y. S., Piddubnyi, V. O. (2020). Radio engineering system identification of metals on the basis of eddy-current converters. Radio Electronics, Computer Science, Control, No. 1, pp. 7–17. doi:10.15588/1607-3274-2020-1-1.

3. Abramovych А. О. (2022). Improving the eddy current identifier of metals based on the correlation approach. Radio Electronics, Computer Science, Control, No. 4, pp. 7-17. doi:10.15588/1607-3274-2022-4-1.

4. Bruschini C. (2002). A Multidisciplinary Analysis of Frequency Domain Metal Detectors for Humanitarian Demining: thesis dissertation of Doctor in Applied Sciences. Vrije Universiteit Brussel, 242 р.

5. Peyton, A. J., Verre, W. V., Gao, X., Marsh, L. A., Podd, F. J. W., Daniels, D. J., Ambruš, D., Vasić, D., Bilas, V. (2019). Embedding target discrimination capabilities into handheld detectors for humanitarian demining. In: The 16th International Symposium Мine Action, pp. 31–35. Ministry of Science and Education, Zagreb.

6. Daniels, D. J. (2004). Ground Penetrating Radar (2nd Edition). Institution of Electrical Engineers, London, UK, 761 p. DOI:10.1049/pbra015e.

7. Sharawi M. S. and Sharawi M. I. (2007). Design and Implementation of a Low Cost VLF Metal Detector with Metal-Type Discrimination Capabilities. 2007 IEEE International Conference on Signal Processing and Communications, pp. 480-483, doi:10.1109/ICSPC.2007.4728360.

8. Abramovych, A. A., Kashirsky, I. S., & Poddubny, V. A. (2017). Method of processing the reflected signals from pulsed eddy current converters. Radio Electronics, Computer Science, Control, Vol. 4, pp. 7–14. doi:10.15588/1607-3274-2017-4-1.

9. Tietze U., Schenk Ch. (2019). Halbleiter-Schaltungstechnik. Springer Vieweg; 16th, adult, Updated edition, 1828 p. ISBN 978-3662485538.

10. Method and apparatus for metal detection employing digital signal processing. (2008). United States Patent, Patent No.: US 7,432,715 B2. Data of Patent Oct. 7, 2008.

11. Ifeachor, E. C.; Jervis, B. W. (2001). Digital Signal Processing: A Practical Approach, 2nd Edition, Hoboken, USA: Prentice Hall; 933p. ISBN 978-0201596199.

12. Salih M. (2012). Fourier Transform – Signal Processing. IntechOpen, 366 p. Doi:10.5772/813.

13. Stroustrup B. (2014). Programming: principles and practice using C++ (2nd Edition). Addison-Wesley, 2339 p., ISBN 978-0321-992789.

14. Abramovych A. O., Poddubny V. O. (2020). Eddy-Current Amplitude-Phase Based Method for Identifying Conductive (Metal) Objects. Metallofiz. Noveishie Tekhnol., Kyiv, Vol. 42, No.8, pp. 1069-1085. DOI:10.15407/mfint.42.08.1169.

15. Yamazaki, S.; Nakane, H.; Tanaka, A. (2002). Basic Analysis of a Metal Detector. IEEE Trans. Instrumentation and Measurement, Vol. 51, Iss. 4, pp. 810-814. DOI:10.1109/TIM.2002.803397.

16. Potin, D.; Vanheeghe, P.; Duflos, E.; Davy, M. (2006). An abrupt change detection algorithm for buried landmines localization. IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 2, pp. 260-272, doi:10.1109/TGRS.2005.861413.

17. Bermani, E.; Boni, A.; Caorsi, S.; Massa, A. (2003). An innovative real-time technique for buried object detection. IEEE Trans. Geosci. Remote Sens., Vol. 41, Iss. 4, pp. 927-931. DOI: 10.1109/TGRS.2003.810928.

18. AN/PSS-14 (former HSTAMIDS) mine detector, L-3 CyTerra. L3Harris. Available online, data access: june 2025.

19. Minehound VMR3G, Dual sensor mine detector. Vallon GmbH. Available online, data access: june 2025.

20. Jol, M. H. (2009). Ground Penetrating Radar. Theory and Applications. Elsevier Science; 574 р. DOI:10.1016/B978-0-444-53348-7.X0001-4.

21. Daniels, D. J. (2009). EM Detection of Concealed Targets. John Wiley & Sons; 299 p. DOI:10.1002/9780470539859.

22. Moore, P. O. (2004). Electromagnetic testing. Columbus, USA: American society for nondestructive testing; 529 p.

23. Bristow, C. S.; Jol H. M. (2003). Ground Penetrating Radar in Sediments. Birkbeck, University of London, UK; 339 p.

24. Electromagnetic method of identification of metals: invention patent 127276 Ukraine: G01N 27/90. № u 2020 08222; info. 22.12.2020; printed. 05.07.2023, journal. № 27/2023.

25. Yamazaki T., Arizono T., Kobayashi T., Ikuta R., Yamamoto T. (2023). Linear Optical Quantum Computation with Frequency-Comb Qubits and Passive Devices. Physical Review Letters, Vol. 130, 200602, pp. 200602-1-200602-6, doi:10.1103/PhysRevLett.130.200602.

26. Lewis, E. E., Sahay, C. & Breneman, J. E. (2022). Introduction to Reliability Engineering, 3rd Edition. Wiley & Sons.

27. Chekubasheva V. A., Kravchuk O. A., Hlukhova H., Glukhov O. V. (2022). Creating of a remote-presence robot based on the development board Texas Instruments to monitor the status of infected patients. Biosensors and bioelectronics: X, Vol. 11, 100215. DOI:10.1016/j.biosx.2022.100215.

28. Shi B. et al. (2022). Impact of Low-Resolution ADC on DOA Estimation Performance for Massive MIMO Receive Array. IEEE Systems Journal, Vol. 16, Iss. 2, pp. 2635-2638, doi: 10.1109/JSYST.2021.3139449.

Downloads

Published

2025-09-30

Issue

Section

Information about completed design

How to Cite

“Improvement of Eddy Current Control System and Response Signal Analysis Model to Increase the Informativeness of Metal Identification” (2025) Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, (101), pp. 51–59. doi:10.20535/RADAP.2025.101.%p.