Method for Calculating an Ultrasonic Scalpel with a 1½-Wave Acoustic Scheme and Enhanced Cavitation Surface

Authors

DOI:

https://doi.org/10.20535/RADAP.2025.101.%25p

Keywords:

ultrasound, ultrasonic cavitation, sound-capillary effect, elasticity, scalpel, glaucoma, trabecula

Abstract

Ultrasonic phacoemulsifiers and scalpels have transformed cataract surgery, enabling minimally invasive procedures through small incisions while minimizing trauma to ocular tissues. Despite its potential to clean the trabecular meshwork of the anterior chamber angle, restore its elasticity, and reduce intraocular pressure, applying ultrasonic cavitation in glaucoma surgery has not been fully implemented so far. A mathematical model of an ultrasonic scalpel for an ophthalmic phacoemulsifier used in glaucoma treatment has been developed in this study, based on a 1½-wave vibrational drive for longitudinal displacements with a symmetric piezoelectric transducer. This model enabled the calculation of acoustic longitudinal dimensions and the simulation of its operation at the resonant frequency. The reciprocating-rotational oscillations of the scalpel needle are achieved by incorporating helical grooves on the surface of the larger-diameter stage of the first ultrasonic velocity transformer, which is in direct contact with the piezoceramic transducer. To enhance the convenience of surgical intervention and reduce the risk of damaging internal eye structures, the tip of the ultrasonic scalpel needle is angled at approximately 15°. The simulation results determined the resonant frequencies of the ultrasonic scalpel with a straight and angled tip, which were 48,373 Hz and 48,702 Hz, respectively. Additionally, the vibration mode of the angled needle tip was identified, exhibiting both longitudinal and bending components, confirming the proposed concept of using an angled tip to improve surgical convenience and reduce the risk of injury to internal eye structures.The implementation of the developed ultrasonic scalpel for glaucoma treatment addresses a significant scientific and applied challenge in modern ophthalmology and mechanical engineering.

Author Biographies

  • S. V. Sharhorodskyi, National Technical University of Ukraine “Ihor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine

    Postgraduate Student of the Applied Fluid Mechanics and Mechatronics Department

  • O. F. Luhovskyi, National Technical University of Ukraine “Ihor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine

    Professor of the Applied Fluid Mechanics and Mechatronics Department

  • A. D. Lavrinenkov, National Technical University of Ukraine “Ihor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine

    Associate Professor of the Department of Aircraft Manufacturing Engineering

  • I. V. Shargorodska, Bogomolets National Medical University, Kyiv, Ukraine

    Professor of the Department of Ophthalmology and Optometry of Postgraduate Education

  • N. V. Kolot, Bogomolets National Medical University, Kyiv, Ukraine

    Postgraduate student of the Department of Ophthalmology and Optometry of Postgraduate Education

References

References

1. Belamkar A. V., Harris A., Wirotsko B., Rowe L., Oddone F., et al. (2025). Medical and surgical treatment management in open angle glaucoma patients of Asian descent: A narrative review. Eur J Ophthalmol, Vol. 35, Iss. 5, pp. 1883-1895. doi:10.1177/11206721251340435.

2. Tham Y. C., Li X., Wong T. Y., Quigley H. A., et al. (2014). Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology, Vol. 121, pp. 2081-2090. doi:10.1016/j.ophtha.2014.05.013.

3. Roberts H. W., Day A. C., O'Brart D. P. (2020). Femtosecond laser-assisted cataract surgery: A review. Eur J Ophthalmol., Vol. 30, Iss. 3, pp. 417-429. doi:10.1177/1120672119893291.

4. Brennen C. E. (2015). Cavitation in medicine. Interface Focus, Vol. 5, Iss. 5, 20150022. doi:10.1098/rsfs.2015.0022.

5. Zhang N., Wang J., Chen B., Li Y., Jiang B. (2021). Prevalence of Primary Angle Closure Glaucoma in the Last 20 Years: A Meta-Analysis and Systematic Review. Front. Med., Vol. 7, 624179. doi: 10.3389/fmed.2020.624179.

6. Stein J. D., Khawaja A. P., Weizer J. S. (2021). Glaucoma in Adults—Screening, Diagnosis, and Management: A Review. JAMA, Vol. 325, Iss. 2, pp. 164–174. doi: 10.1001/jama.2020.21899.

7. Luhovskyi O. F., Movchanyuk A. V., Bernyk I. M., Shulga A. V., Grishko I. A. (2021). Hardware support for ultrasonic cavitation technologies. K: Igor Sikorsky Kyiv Polytechnic Institute, Publisher FOP Kushnir Yu. V., 216 p.

8. Luhovskyi O. F., Grishko I. A., Zilinskyi A. I., Shulga A. V., Movchanyuk A. V., Bernyk I. M.(2022). Ultrasonic cavitation disinfection and filtration technologies. Monograph. K: Igor Sikorsky Kyiv Polytechnic Institute, Publisher FOP Kushnir Yu. V, 213 p.

9. Yang Z., Zhu L., Zhang G., Ni C., Lin B. (2020). Review of ultrasonic vibration-assisted machining in advanced materials. Int. J. Mach. Tools Manuf., Vol. 156, 103594. DOI:10.1016/j.ijmachtools.2020.103594.

10. Liu X., Zhang Q., Chen M., Liu Y., Zhu J., et al. (2023). Multiphysics Modeling and Analysis of Sc-Doped AlN Thin Film Based Piezoelectric Micromachined Ultrasonic Transducer by Finite Element Method. Micromachines, Vol. 14, Iss. 10, 1942. doi:10.3390/mi14101942.

11. Baraya M., Yan J., Hossam M. (2024). Improving and Predicting the Surface Roughness and the Machining Accuracy in Ultrasonic Vibration-Assisted Milling. J. Vib. Eng. Technol., Vol. 12, pp. 127-140. doi:10.1007/s42417-024-01406-z.

12. An D., Huang Y., Li J., Huang W. (2024). Design and Characteristics Study of Longitudinal-Torsional Piezoelectric Ultrasonic Transducers. Int. J. Precis. Eng. Manuf., Vol. 26, pp. 559-568. doi:10.1007/s12541-024-01123-3.

13. Pandey H., Apurva A., Dixit P. (2024). Investigations into velocity decay, initial tool-workpiece gap, and material removal behaviour in ultrasonic micromachining. J. Manuf. Process., Vol. 124, pp. 52–67. doi:10.1016/j.jmapro.2024.05.080.

14. Chen Y., Hu Z., Yu Y., Lai Z., Zhu J., et al. (2022). Processing and Machining Mechanism of Ultrasonic Vibration-Assisted Grinding on Sapphire. Mater. Sci. Semicond. Process., Vol. 142, 106470. doi: 10.1016/j.mssp.2022.106470.

15. Akahoshi, Takayuki. (2005) Phacoemulsification needle. EUROPEAN PATENT APPLICATION #05405378.0 A61F 9/007. 21.12.2005 Bulletin 2005/51.

16. Svensson B., Mellerio J. (1994). Phaco-emulsification causes the formation of cavitation bubbles. Curr Eye Res., Vol. 13, Iss. 9, pp. 649-53. doi: 10.3109/02713689408999900.

17. Bohner A., Peterson J. S., Wright A. J., Mamalis C., Bernhisel A., et al. (2020). Effects on phacoemulsification efficiency and chatter at variable longitudinal ultrasound settings when combined with constant torsional energy. J Cataract Refract Surg., Vol. 46, Iss. 5, pp. 774-777. doi: 10.1097/j.jcrs.0000000000000150.

18. Rao A., Sahay P., Das G., Sarangi S., Padhy D. (2020). Scoop and chop - A modified phaco-chop technique for pseudoexfoliation and cataract. Oman J Ophthalmol., Vol. 13, Iss. 2, pp. 57-62. doi: 10.4103/ojo.OJO_114_2017.

19. Bianchi G. R. (2021). Corneal Endothelial Health after Phacoemulsification Cataract Surgery without Viscoelastic Substance. J Curr Ophthalmol., Vol. 33, Iss. 1, pp. 75-81. doi: 10.4103/JOCO.JOCO_185_20.

20. Fang Z., Song Y., Jin L., Han Y., Zhang X. (2025). Phacoemulsification combined with trabecular meshwork-Schlemm canal-based minimally invasive glaucoma surgery in primary angle-closure glaucoma: a systematic review and meta-analysis. BMC Ophthalmology, Vol. 25, Article number: 168. doi:10.1186/s12886-025-04005-y.

21. Song Y., Zhu X., Zhang Y., Shu J., Dang G., et al. (2023). Outcomes of Partial Versus Complete Goniotomy With or Without Phacoemulsification for Primary Open Angle Glaucoma: A Multicenter Study. J Glaucoma, Vol. 32, Iss. 7, pp. 563–568. doi: 10.1097/IJG.0000000000002210.

22. El Sayed Y. M., Mettias N. M., Elghonemy H. M. E., Mostafa Y. S. E. (2024). Phacoemulsification with gonioscopy-assisted transluminal trabeculotomy versus phacoemulsification alone in primary angle closure glaucoma: A randomized controlled study. Acta Ophthalmol, Vol. 102, Iss. 2:e195–203. DOI: 10.1111/aos.15733.

Downloads

Published

2025-09-30

Issue

Section

Radioelectronics Medical Technologies

How to Cite

“Method for Calculating an Ultrasonic Scalpel with a 1½-Wave Acoustic Scheme and Enhanced Cavitation Surface” (2025) Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, (101), pp. 18–27. doi:10.20535/RADAP.2025.101.%p.

Most read articles by the same author(s)