Multibeam arrays on the basis of Rotman lenses

Authors

  • A. V. Bulashenko National Technical University of Ukraine, Kyiv Politechnic Institute, Kiev

DOI:

https://doi.org/10.20535/RADAP.2010.42.178-186

Keywords:

multibeam array, Rotman lens

Abstract

The paper gives a re-view of modern feed circuits multibeam antennas based on Rotman lens. The main attention has been concentrated to possibilities of microstripe lens.

Author Biography

A. V. Bulashenko, National Technical University of Ukraine, Kyiv Politechnic Institute, Kiev

References

Устройства СВЧ и антенны. Проектирование фазированных антенных решеток: Уч. пособие для вузов / Под ред. Д.И. Воскресенского. М.: Радиотехника, 2003. – 632с.

Rotman W., Turner R. Wide-angle microwave lens for line source applications // IEEE Transactions Antennas Propagation, Vol. 11, No. 6, November, 1963, pp. 623 – 632.

Peterson A. F. Scattering matrix integral equation analysis for the design of a wave-guide Rotman lens // IEEE Transactions on antennas and propagation, Vol. 47, No. 5, May 1999. – pp. 870 – 878.

Hansen R. C. Design trades for Rotman lenses // IEEE Transactions on antennas and propagation, Vol. 39, No. 4, April 1991., pp. 464 – 472.

Park C. S., Kim J., Min S. TM0 mode surface wave excited dielectric slab Rotman lens // IEEE Antennas and wireless propagation letters, Vol. 6, 2007. – pp. 584 – 587.

Kim S., Zepeda P., Chang K. Piezoelectric transducer controlled multiple beam phased array using microstrip Rotman lens // IEEE Microwave and wireless components letters, Vol. 15, No. 4, April 2005. – pp. 247 – 249.

Kim J., Cho C. S., Barnes F. S. Dielectric slab Rotman lens // IEEE Microwave and wireless components letters, Vol. 15, No. 5, May 2005. – pp. 348 – 350.

Simon P. S. Analysis and synthesis of Rotman lenses // 22ndAIAA International Communications Satellite systems conference and exhibit 2004, 9-12 May, Monterey, Cali-. fornia, USA.

Hall L., Hansen H., Abbott D. Rotman lens for mm-wavelengths // Proceedings of

SPIE. Vol. 4935, 2002. – pp. 215 – 221.

Rotman R., Green Y., Israel Y., Lee J. F., Lin T. Y., Lee S. C. Design and analysis of microstrip line Rotman lenses // Electro Science laboratory.

Singhal P. K., Sharma P. C., Gupta R. D. Rotman lens with equal height of array and feed contours // IEEE Transactions on antennas and propagation, Vol. 51, No. 8, A ugust 2003, pp. 2048 – 2056.

The handbook of antenna design. Volume 1 ed. By A. W. Rudge. – London, UK: Peter Peregrinus Ltd., 1982. – 336 p.

Josef G. Worms, Peter Knott and Dirk Nuessler. The experimental system PALES: signal separation with a multibeam -system based on a Rotman lens // IEEE Antennas and Propagation Magazine, Vol. 49, No. 3, June 2007. – pp. 95 – 107.

Takashi Katagi, Seiji Mano, Shinichi Sato. An improved design method of Rotman lens antennas // IEEE Transactions on antennas and propagation, Vol. AP-32, No. 5, May 1984. – pp. 524 – 527.

Tao Y. M., Delisle G. Y. Lens-fed multiple beam array for millimeter wave Indoor Communications // IEEE Trans. On Antennas and propagation, Vol. AP-32, No. 5, May 1997, pp. 2206 – 2209.

David R. Gagnon. Procedure for correct refocusing of the Rotman lens according to Shell’s law // IEEE Antennas and Propagation Magazine, Vol. 37, No. 3, March 1989. – pp. 390 – 392.

Jacob Remez, Avigdor segal and Refael Shansi. Dual -polarized wideband widescan multibeam antenna system from tapered slotline elements array // IEEE Antennas and wire-less propagation letters, Vol. 4, 2005. – pp. 293 – 296.

Lora Schulwitz, Amir Mortazawi. A new low loss Rotman lens design using a graded dielectric substrate // IEEE Transactions on microwave theory and techniques, Vol. 56, No. 12, December 2008. – pp. 2734 – 2741.

Sanghyo Lee, Sangsub Song, Youngmin Kim, Jangsoo Lee, Chang-Yul Cheon, Kwang-Seok Seo, Youngwoo Kwon. A V-band beam-steering antenna on a thin-film sub-strate with a flip-chip interconnection // IEEE Microwave and wireless components le tters, Vol. 18, No. 4, April 2008. – pp. 287 – 289.

Carsten Metz, Jens Grubert, Johann Heyen. Fully integrated automotive radar sensor with versatile resolution // IEEE Transactions on microwave theory and techiques, Vol. 49, No. 12, December 2001. – pp. 2560 – 2565.

Yu Jian Cheng, Wei Hong, Ke Wu, Zhen Qi Kuai, Chen Yu, Ji Xin Chen, Jian Yi Zhou and Hong Jun Tang. Substrate integrated waveguide (SIW) Rotman Lens and its Ka-band multibeam array antenns applications // IEEE Transactions on antennas and propagation, Vol. 56, No. 8, August 2008. – pp. 2504 – 2513.

Joerg Schoelbel, Thomas Buck, mathias Remann, Markus Ulm, Martin Schneider, Anne Jourdain, Geert J. Carchon. Design considerations and technology assessment of phased-array antenna systems with RF MEMS from automotive radar applications // IEEE Transactions on microwave theory and techniques, VOL. 53, No. 6, Jule 2005. – pp. 1968 –1975.

Kwok Kee Chan and Sudhakar K. Rao. Design of a Rotman lens fed network to generate a hexagonal lattice of multiple beams // IEEE Transactions on antennas and propagation, Vol. 50, No. 8, August 2002. – pp. 1099 – 1108.

Christopher W. Penney. Rotman lens design and simulation in software // IEEE Microwave magazine, December 2008. – pp. 138 – 149.

How to Cite

Булашенко, А. (2010) “Multibeam arrays on the basis of Rotman lenses”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, 0(42), pp. 178-186. doi: 10.20535/RADAP.2010.42.178-186.

Issue

Section

Reviews