Multibeam arrays on the basis of Rotman lenses

Authors

  • A. V. Bulashenko National Technical University of Ukraine, Kyiv Politechnic Institute, Kiev

DOI:

https://doi.org/10.20535/RADAP.2010.42.178-186

Keywords:

multibeam array, Rotman lens

Abstract

The paper gives a re-view of modern feed circuits multibeam antennas based on Rotman lens. The main attention has been concentrated to possibilities of microstripe lens.

Author Biography

  • A. V. Bulashenko, National Technical University of Ukraine, Kyiv Politechnic Institute, Kiev

References

Устройства СВЧ и антенны. Проектирование фазированных антенных решеток: Уч. пособие для вузов / Под ред. Д.И. Воскресенского. М.: Радиотехника, 2003. – 632с.

Rotman W., Turner R. Wide-angle microwave lens for line source applications // IEEE Transactions Antennas Propagation, Vol. 11, No. 6, November, 1963, pp. 623 – 632.

Peterson A. F. Scattering matrix integral equation analysis for the design of a wave-guide Rotman lens // IEEE Transactions on antennas and propagation, Vol. 47, No. 5, May 1999. – pp. 870 – 878.

Hansen R. C. Design trades for Rotman lenses // IEEE Transactions on antennas and propagation, Vol. 39, No. 4, April 1991., pp. 464 – 472.

Park C. S., Kim J., Min S. TM0 mode surface wave excited dielectric slab Rotman lens // IEEE Antennas and wireless propagation letters, Vol. 6, 2007. – pp. 584 – 587.

Kim S., Zepeda P., Chang K. Piezoelectric transducer controlled multiple beam phased array using microstrip Rotman lens // IEEE Microwave and wireless components letters, Vol. 15, No. 4, April 2005. – pp. 247 – 249.

Kim J., Cho C. S., Barnes F. S. Dielectric slab Rotman lens // IEEE Microwave and wireless components letters, Vol. 15, No. 5, May 2005. – pp. 348 – 350.

Simon P. S. Analysis and synthesis of Rotman lenses // 22ndAIAA International Communications Satellite systems conference and exhibit 2004, 9-12 May, Monterey, Cali-. fornia, USA.

Hall L., Hansen H., Abbott D. Rotman lens for mm-wavelengths // Proceedings of

SPIE. Vol. 4935, 2002. – pp. 215 – 221.

Rotman R., Green Y., Israel Y., Lee J. F., Lin T. Y., Lee S. C. Design and analysis of microstrip line Rotman lenses // Electro Science laboratory.

Singhal P. K., Sharma P. C., Gupta R. D. Rotman lens with equal height of array and feed contours // IEEE Transactions on antennas and propagation, Vol. 51, No. 8, A ugust 2003, pp. 2048 – 2056.

The handbook of antenna design. Volume 1 ed. By A. W. Rudge. – London, UK: Peter Peregrinus Ltd., 1982. – 336 p.

Josef G. Worms, Peter Knott and Dirk Nuessler. The experimental system PALES: signal separation with a multibeam -system based on a Rotman lens // IEEE Antennas and Propagation Magazine, Vol. 49, No. 3, June 2007. – pp. 95 – 107.

Takashi Katagi, Seiji Mano, Shinichi Sato. An improved design method of Rotman lens antennas // IEEE Transactions on antennas and propagation, Vol. AP-32, No. 5, May 1984. – pp. 524 – 527.

Tao Y. M., Delisle G. Y. Lens-fed multiple beam array for millimeter wave Indoor Communications // IEEE Trans. On Antennas and propagation, Vol. AP-32, No. 5, May 1997, pp. 2206 – 2209.

David R. Gagnon. Procedure for correct refocusing of the Rotman lens according to Shell’s law // IEEE Antennas and Propagation Magazine, Vol. 37, No. 3, March 1989. – pp. 390 – 392.

Jacob Remez, Avigdor segal and Refael Shansi. Dual -polarized wideband widescan multibeam antenna system from tapered slotline elements array // IEEE Antennas and wire-less propagation letters, Vol. 4, 2005. – pp. 293 – 296.

Lora Schulwitz, Amir Mortazawi. A new low loss Rotman lens design using a graded dielectric substrate // IEEE Transactions on microwave theory and techniques, Vol. 56, No. 12, December 2008. – pp. 2734 – 2741.

Sanghyo Lee, Sangsub Song, Youngmin Kim, Jangsoo Lee, Chang-Yul Cheon, Kwang-Seok Seo, Youngwoo Kwon. A V-band beam-steering antenna on a thin-film sub-strate with a flip-chip interconnection // IEEE Microwave and wireless components le tters, Vol. 18, No. 4, April 2008. – pp. 287 – 289.

Carsten Metz, Jens Grubert, Johann Heyen. Fully integrated automotive radar sensor with versatile resolution // IEEE Transactions on microwave theory and techiques, Vol. 49, No. 12, December 2001. – pp. 2560 – 2565.

Yu Jian Cheng, Wei Hong, Ke Wu, Zhen Qi Kuai, Chen Yu, Ji Xin Chen, Jian Yi Zhou and Hong Jun Tang. Substrate integrated waveguide (SIW) Rotman Lens and its Ka-band multibeam array antenns applications // IEEE Transactions on antennas and propagation, Vol. 56, No. 8, August 2008. – pp. 2504 – 2513.

Joerg Schoelbel, Thomas Buck, mathias Remann, Markus Ulm, Martin Schneider, Anne Jourdain, Geert J. Carchon. Design considerations and technology assessment of phased-array antenna systems with RF MEMS from automotive radar applications // IEEE Transactions on microwave theory and techniques, VOL. 53, No. 6, Jule 2005. – pp. 1968 –1975.

Kwok Kee Chan and Sudhakar K. Rao. Design of a Rotman lens fed network to generate a hexagonal lattice of multiple beams // IEEE Transactions on antennas and propagation, Vol. 50, No. 8, August 2002. – pp. 1099 – 1108.

Christopher W. Penney. Rotman lens design and simulation in software // IEEE Microwave magazine, December 2008. – pp. 138 – 149.

Issue

Section

Reviews

How to Cite

“Multibeam arrays on the basis of Rotman lenses” (2010) Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, (42), pp. 178–186. doi:10.20535/RADAP.2010.42.178-186.