Numerical Performance of FEM and FDTD Methods for the Simulation of Waveguide Polarizers

Authors

DOI:

https://doi.org/10.20535/RADAP.2021.84.11-21

Keywords:

FDTD , FEM , FIT , convergence , microwave devices , polarizer, iris polarizer, satellite information systems, differential phase shift , crosspolar discrimination

Abstract

Nowadays, method of finite differences (FDTD) is most frequently applied for the numerical simulation of the processes of electromagnetic waves propagation in various microwave devices and antenna systems in the time domain, while in the frequency domain the finite elements method (FEM) is the most used one. Therefore, the comparison of these effective modern calculation methods is an urgent problem. Currently, there are many modifications of these numerical methods, which possess their own strengths and weaknesses. This article presents the results of the analysis and comparison of these two methods on the example of modeling of the electromagnetic characteristics of a polarizer based on a square waveguide with five irises. As a result, it was found that the convergence of the voltage standing wave ratio of the developed polarizer is fast for both methods. In addition, it was obtained that the convergence of the characteristics of differential phase shift, axial ratio and crosspolar discrimination of the developed microwave device are much more sensitive to the number of applied mesh cells. This number of mesh cells was obtained by the adaptive dividing of the inner structure’s volume of the device. It was found that it is necessary to use not less than 120 000 cells of the adaptive tetrahedral mesh on the whole volume of the polarizer’s structure in the case of finite elements method in the frequency domain utilization with the required accuracy of calculation of the polarization characteristics of the developed waveguide polarizer with irises, which is equal to 0.2 dB. It was obtained that it is required to use not less than 1 200 000 cells of the hexahedral mesh on the whole volume of the polarizer’s structure in the case of finite difference time domain method application with the required accuracy of calculation of the polarization characteristics of the developed waveguide polarizer with irises, which is equal to 0.2 dB. In addition, in the article we have revealed that the computation time of the finite difference time domain method is more than 2 times longer than the corresponding time required for the calculation using finite elements method in the frequency domain. In this case the corresponding number of hexahedral mesh cells in the finite difference time domain method is 10 times greater than the number of tetrahedral mesh cells required in the finite elements method in the frequency domain. 

Author Biographies

S. І. Piltyay , National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv

к.т.н., доцент

A. V. Bulashenko , National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

senior lecturer

References

References

Virone G., Tascone R., Peverinin O. A., Addamo G., Orta R. (2008). Combined-phase-shift waveguide polarizer. IEEE Microwave and Wireless Comp. Letters, Vol. 18, Iss. 8, pp. 509–511. DOI:10.1109/LMWC.2008.2001005.

Yang D.-Y., Lee M.-S. (2012). Analysis and Design of Waveguide Iris Polarizers for Rotation of Polarization Plane. Journal of the Korea Academia-Industrial cooperation Societly, Vol. 13, no. 7, pp. 3201-3206. DOI: 10.5762/KAIS.13.7.3201.

Dubrovka F. F., Piltyay S. I. (2013). A novel wideband coaxial polarizer. 2013 IX International Conference on Antenna Theory and Techniques, Odessa, Ukraine, pp. 473–474. DOI:10.1109/ICATT.2013.6650816.

Piltyay S. I. (2017). High performance extended C-band 3.4-4.8 GHz dual circular polarization feed system. 2017 XI International Conference on Antenna Theory and Techniques, Kyiv, Ukraine, pp. 284–287. DOI:10.1109/ICATT.2017.7972644.

Piltyay S. I., Sushko O. Yu., Bulashenko A. V. and Demchenko I. V. (2020). Compact Ku-band iris polarizers for satellite telecommunication systems. Telecommunications and Radio Engineering, Vol. 79, Iss.19, pp. 1673–1690. DOI:10.1615/TelecomRadEng.v79.i19.10.

Piltyay S.I., Bulashenko A.V., Demchenko I.V. (2020). Waveguide iris polarizers for Ku-band satellite antenna feeds. Journal of Nano- and Electronic Physics, Vol. 12, Iss. 5, pp. 05024-1–05024-5. DOI: 10.21272/jnep.12(5).05024.

Bulashenko A.V., Piltyay S. I. and Demchenko I. V. (2020). Optimization of a polarizer based on a square waveguide with irises. Naukoiemni tekhnolohii [Science-Based Technologies], Vol. 47, Iss. 3. pp. 287–297. [In Ukrainian]. DOI:10.18372/2310-5461.47.14878.

Wang X., Huang X. and Jin X. (2016). Novel square/rectangle waveguide septum polarizer. 2016 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), Nanjing, China, p. 725-726. DOI:10.1109/ICUWB.2016.7790510.

Nikolic N., Weily A., Kekic I., Smith S. L. and Smart K. W. (2018). A septum polarizer with integrted square to circular tapered waveguide. 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, USA, p. 725-726. DOI:10.1109/APUSNCURSINRSM.2018.8608909.

Deutschmann B. and Jacob A. F. (2020). Broadband septum polarizer with triangular common port. IEEE Transactions on Microwave Theory and Techniques, Vol. 68, Iss. 2, pp. 693-700. DOI:10.1109/TMTT.2019.2951138.

Dubrovka F., Piltyay S., Sushko O., Dubrovka R., Lytvyn M. and Lytvyn S. (2020). Compact X-band stepped-thickness septum polarizer. IEEE Ukrainian Microwave Week, Kharkiv, Ukraine, pp. 135–138. DOI:10.1109/UkrMW49653.2020.9252583.

Dubrovka F., Martunyuk S., et al. (2020). Circularly Polarised X-band H11- and H21-modes Antenna Feed for Monopulse Autotracking Ground Station: Invited Paper. IEEE Ukrainian Microwave Week, Kharkiv, Ukraine, pp. 196–202. DOI:10.1109/UkrMW49653.2020.9252600.

Cano J. L. and Mediavilla A. (2020). Broadband septum polarizer with triangular common port. IEEE Transactions on Microwave Theory and Techniques, early access, pp. 1-10. DOI:10.1109/TMTT.2020.3030639.

Mohseni S. H., Kashani F. H. and Fallah M. (2010). A New Profile for Metal Post Circular Waveguide Polarizer. Progress in Electromagnetics Research Symposium Proceedings, Cambridge, USA, pp. 703-705.

Chittora A. and Yadav S. V. (2020). A Compact Circular Waveguide Polarizer with Higher Order Mode Excitation. IEEE International Conference on Electronics, Computing and Communication Technologies, Bangalore, India, pp. 1-4. DOI:10.1109/CONECCT50063.2020.9198499.

Zubko L. D., Кryzhanovsky V. G. and Rassokhina Yu. V. (1997). Analiz poljarizatora na nereguljarnom G-volnovode [Analysis of a polarizer based on an irregular Г-shaped waveguide]. Radio Engineering and electronics, Vol.42, Iss. 8, pp. 904-909. [In Russian].

Manshari S., Koziel S. and L. Leifsson (2020). Compact Dual-Polarized Corrugated Horn Antenna for Satellite Communication. IEEE Transactions on Antennas and Propagation, Vol. 68, Iss. 7, pp. 5122–5129. DOI:10.1109/TAP.2020.2980337.

Dubrovka F. F. and Piltyay S. I. (2017). Novel high performance coherent dual-wideband orthomode transducer for coaxial horn feeds. 2017 XI International Conference on Antenna Theory and Techniques (ICATT), Kyiv, Ukraine, pp. 277–280. DOI:10.1109/ICATT.2017.7972642.

Jazani G. and Pirhadi A. (2018). Design of dual-polariswd (RHCP/LHCP) quad-ridged horn antenna with wideband septum polarizer waveguide feed. IET Microwaves, Antennas & Propagations, Vol. 12, Iss.9, pp. 1541–1545. DOI:10.1049/iet-map.2017.0611.

Piltyay S. I. (2014). Enhanced C-band Coaxial Orthomode Transducer. Visnyk NTUU KPI Seriia – Radiotekhnika, Radioaparatobuduvannia, Vol. 58, pp. 27–34. DOI:10.20535/RADAP.2014.58.27-34.

Piltyay S. I. (2012) Numerically effective basis functions in integral equation technique for sectoral coaxial ridged waveguides, 2012 International Conference on Mathematical Methods in Electromagnetic Theory, Kharkiv, Ukraine, pp. 492–495. DOI: 10.1109/MMET.2012.6331195.

Dubrovka F. F. and Piltyay S. I. (2013). Eigenmodes analysis of sectoral coaxial ridged waveguides by transverse field-matching technique. Part 2. Results. Visnyk NTUU KPI Seriia – Radiotekhnika, Radioaparatobuduvannia, Vol. 55, pp. 13–23. DOI: 10.20535/RADAP.2013.55.13-23.

Zhao C., Fumeaux C. (2019). Mode-Matching Analysis of Phase Shifter in Substrate-Integrated Waveguide Technology. 2019 IEEE International Conference on Computational Electromagnetics (ICCEM), Shanghai, China. DOI: 10.1109/COMPEM.2019.8779223.

Yang Y.-M., Yuan C.-W., Cheng G.-X., Qian B.-L. (2015). Ku-band Rectangular Waveguide Wide Side Dimension Adjustable Phase Shifter. IEEE Trnsactions on Plasma Science, Vol. 43, Iss. 5, pp. 1666–1669. DOI: 10.1109/TPS.2014.2370074.

Zhang Q., Yan C., Liu L. (2016). Studies on mechanical tunable waveguide phase shifters for phased-array antenna applications. IEEE International Symposium on Phased Array Systems and Technology (PAST), Waltham, USA. DOI: 10.1109/TPS.2016.7832555.

Al-Amoodi K., Mirzavand R., Honari M. M., Melzer J., Elliott D. G, Mousavi P. (2020). A Compact Substrate Integrated Waveguide Notched-Septum Polarizer for 5G Mobile Devices. IEEE Antennas and Wireless Propagation Letters, Vol. 19, Iss. 12, pp. 2517–2521. DOI: 10.1109/LAWP.2020.3038404.

Bulashenko A. V. (2020) Evaluation of D2D Communications in 5G networks. Visnyk NTUU KPI Seriia – Radiotekhnika, Radioaparatobuduvannia, Vol. 81, pp. 21–29. [In Ukrainian]. DOI: 10.20535/RADAP.2020.81.21-29.

Bulashenko A. V., Piltyay S. I. (2020). Equivalent Microwave Circuit Technique for Waveguide Iris Polarizers Development. Visnyk NTUU KPI Seriia – Radiotekhnika, Radioaparatobuduvannia, Vol. 83, pp. 17–28, DOI: 10.20535/RADAP.2020.83.17-28.

Piltyay S. I., Bulashenko A. V., Demchenko I. V. (2020). Compact polarizers for satellite information systems. Proceedings of IEEE International Conference on Problems of Infocommunications. Science and Technology, Kharkiv, Ukraine.

Bulashenko A. V., Piltyay S. I., Demchenko I. V. (2020). Analytical technique for iris polarizers development. Proceedings of IEEE International Conference on Problems of Infocommunications. Science and Technology, Kharkiv, Ukraine.

Piltyay S.I., Bulashenko A.V., Demchenko I.V. (2020). Analytical synthesis of waveguide iris polarizers. Telecommunications and Radio Engineering, Vol. 79, Iss. 18, pp. 1579–1597. DOI: 10.1615/TelecomRadEng.v79.i18.10.

Zhu B., Chen J., Zhong W. (2011). A hybrid finite-element/finite-difference method with implicit-explicit time stepping scheme for Maxwell’s equations. IEEE International Conference on Microwave Technology and Computational Electromagnetics (ICMTCE), Beijing, China, pp. 481–484. DOI: 10.1109/ICMTCE.2011.5915564.

Classen C., Bandlow B. and Schuhmann R. (2012). Local Approximation Based Material Averaging Approach in the Finite Integration Technique*. IEEE Transactions on Magnetics, Vol. 48, Iss. 6, pp. 2097-2100, June 2012, doi: 10.1109/TMAG.2012.2197131.

Šekeljić N. J., Ilić M. M. and Notaroš B. M. (2013). Higher Order Time-Domain Finite-Element Method for Microwave Device Modeling with Generalized Hexahedral Elements. IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 4, pp. 1425–1434. DOI: 10.1109/TMTT.2013.2246186.

Marechal Y., Ramdane B. and Botelho D. P. (2014). Computational Performances of Natural Element and Finite Element Methods. IEEE Transactions on Magnetics, Vol. 50, Iss. 2. DOI: 10.1109/TMAG.2013.2285259.

Sakata T., Mifune T., Matsuo T. (2016). Optimal subgrid connection for space-time finite integration technique. IEEE Conference on Electromagnetic Field Computation. DOI: 10.1109/CEFC.2016.7816159.

Sakata Y., Mifune T., Matsuo T. (2017). Optimal Subgrid Connection for Space-Time Finite Integration Technique. IEEE Transactions on Magnetics, Vol. 53, Iss. 6. DOI: 10.1109/TMAG.2017.2655626.

Liu N., Cai G., Zhu C., Huang Y., Liu Q. H. (2015). The Mixed Finite Element Method With Mass Lumping for Computing Optical Waveguide Modes. IEEE Journal of Selected Topics in Quantum Electronics, Vol. 22, Iss. 2. DOI: 10.1109/JSTQE.2015.2473689.

Sun Q., Zhang R., Zhan Q., Liu Q. H. (2019). 3-D Implicit–Explicit Hybrid Finite Difference/Spectral Element/Finite Element Time Domain Method Without a Buffer Zone. IEEE Transactions on Antennas and Propagation, Vol. 67, Iss. 8, pp. 5469–5476. DOI: 10.1109/TAP.2019.2913740.

Xu J. and Xie G. (2019). A Novel Hybrid Method of Spatially Filtered FDTD and Subgridding Technique. IEEE Access, Vol. 7, pp. 85622–85626. DOI: 10.1109/ACCESS.2019.2925835.

Kazemzadeh M., Xu W., Broderick N. G. R. (2020). Faster and More Accurate Time Domain Electromagnetic Simulation Using Space Transformation. IEEE Photonics Journal, Vol. 12, Iss. 4, pp. 1–13. DOI: 10.1109/JPHOT.2020.3005704.

Kazemzadeh M. R., Broderick N. G. R., Xu W. (2020). Novel Time-Domain Electromagnetic Simulation Using Triangular Meshes by Applying Space Curvature. IEEE Open Journal on Antennas and Propagation, Vol. 1, pp. 387–395. DOI: 10.1109/OJAP.2020.3011920.

Downloads

Published

2021-03-30

How to Cite

Пільтяй, С. І., Булашенко, А. В. . and Гергіль , Є. Є. (2021) “Numerical Performance of FEM and FDTD Methods for the Simulation of Waveguide Polarizers”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, (84), pp. 11-21. doi: 10.20535/RADAP.2021.84.11-21.

Issue

Section

Electrodynamics. Microwave devices. Antennas