Synthesis of SIW Filters in the Millimeter Wavelength Range

Authors

DOI:

https://doi.org/10.20535/RADAP.2025.100.%25p

Keywords:

SIW, band-pass filter, millimeter wavelength range, dimensional synthesis

Abstract

The paper presents the results of the development of bandpass filters of the millimeter wavelength range, manufactured using SIW technology. Most attention is paid to the insufficiently covered in modern literature procedure for the synthesis of such filters, which makes it possible to find all the dimensions of the filter topology elements (the so-called dimensional synthesis). It was shown that the use of the standard procedure for the synthesis of bandpass SIW filters leads to unsatisfactory results. The identified reasons for this allowed us to make the necessary adjustments to the calculation method. Although the specified development of the synthesis procedure is performed on the example of a common topology of a bandpass SIW filter on inductive pins, the considered structure differs favorably from the standard one for this case in that the role of the extreme inhomogeneities of the filter here is performed by the SIW excitation nodes from the input and output microstrip lines. This allows to significantly reduce the size of the filter, the level of its losses, and also to improve the topological flexibility when integrating the SIW filter into the system using a linear or angular implementation of its topology. The results of theoretical calculations are compared with the data obtained when measuring the parameters of the manufactured samples, and the latter with the known data on the parameters of waveguide-planar filters with similar characteristics. It is shown that although the latter have better characteristics in terms of minimum losses, SIW filters made on modern dielectric materials are comparable to them in this parameter, but significantly surpass them in terms of manufacturability, compactness and economic attractiveness.

References

References

1. Ma, M., Huang, J., Yu, Z. & Gan T. (2003). A Novel E-Plane Waveguide Filter with Three Metal Irises. International Journal of Infrared and Millimeter Waves, Vol. 24, pp. 2181–2187. doi:10.1023/B:IJIM.0000009773.84968.d8.

2. Mohottige N., Glubokov O., Jankovic U. and Budimir D. (2016). Ultra Compact Inline $E$-Plane Waveguide Bandpass Filters Using Cross Coupling. Transactions on Microwave Theory and Techniques, Vol. 64, No. 8, pp. 2561-2571. doi:10.1109/TMTT.2016.2578329.

3. Kozakowski P. and Deleniv A. (2011). New resonator arrangement for reduced size E-plane filters. 2011 IEEE MTT-S International Microwave Symposium, pp. 1-1. doi:10.1109/MWSYM.2011.5973388.

4. Zhuk S. Ya., Omelianenko M. Y., Romanenko T. V., Tureeva O. V. (2021). Synthesis of Extremely Wide Stopband E-plane Bandpass Filters. Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, Vol. 84, pp. 22–29. doi:10.20535/RADAP.2021.84.22-29.

5. Uchimura H., Takenoshita T., Fujii M. (1998). Development of a ``laminated waveguide''. IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 12, pp. 2438-2443. doi:10.1109/22.739232.

6. Gupta K. C. (1996). Microstrip Lines and Slotlines, 2nd Ed., Artech House, 547 p.

7. Deslandes D., Wu K. (2003). Single-substrate integration technique of planar circuits and waveguide filters. IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 2, pp. 593-596. doi:10.1109/TMTT.2002.807820.

8. Deslandes D., Wu K. (2001). Integrated microstrip and rectangular waveguide in planar form. IEEE Microwave and Wireless Components Letters, Vol. 11, No. 2, pp. 68-70. doi:10.1109/7260.914305.

9. Zhu F., Hong W., Chen J. X., Wu K. (2013). Wide stopband substrate integrated waveguide filter using corner cavities. Electronics Letters, Vol. 49, Iss. 1, pp. 50-52. doi:10.1049/el.2012.3891.

10. Liu Q., Zhang D., Tang M., Deng H., Zhou D. (2021). A Class of Box-Like Bandpass Filters With Wide Stopband Based on New Dual-Mode Rectangular SIW Cavities. IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 1, pp. 101-110. doi:10.1109/TMTT.2020.3037497.

11. Cheng Y., Hong W., Wu K. (2007). Half Mode Substrate Integrated Waveguide (HMSIW) Directional Filter. IEEE Microwave and Wireless Components Letters, Vol. 17, No. 7, pp. 504-506. doi:10.1109/LMWC.2007.899309.

12. Zhang S., She J.-C., Tong M.-H., Hong J.-S. (2021). Mode selective bandpass filter with high selectivity based on thirty-second-mode circular SIW resonator. Microwave and Optical Technology Letters, Vol. 63, Iss. 7, pp. 1820-1825. doi:10.1002/mop.32831.

13. Vanin F. M., Schmitt D., Levy R. (2004). Dimensional synthesis for wide-band waveguide filters and diplexersr. IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 11, pp. 2488-2495. doi:10.1109/TMTT.2004.837146.

14. Wang K., Wong S.-W., Sun G.-H., Chen Z. N., Zhu L., Chu Q.-X. (2016). Synthesis Method for Substrate-Integrated Waveguide Bandpass Filter With Even-Order Chebyshev Response. IEEE Transactions on Components, Packaging and Manufacturing Technolog, Vol. 6, No. 1, pp. 126-135. doi:10.1109/TCPMT.2015.2502420.

15. Cassivi Y., Perregrini L., Arcioni P., Bressan M., Wu K., Conciauro G. (2002). Dispersion characteristics of substrate integrated rectangular waveguide. IEEE Microwave and Wireless Components Letters, Vol. 12, No. 9, pp. 333-335. doi:10.1109/LMWC.2002.803188.

16. Matthaei G. L., Young L. and Jones E. M. T. (1964). Microwave Filters, Impedance Matching Networks and Coupling Structures. McGraw-Hill, New York, 438 p.

Published

2025-06-30

Issue

Section

Electrodynamics. Microwave devices. Antennas

How to Cite

“Synthesis of SIW Filters in the Millimeter Wavelength Range” (2025) Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, (100), pp. 5–13. doi:10.20535/RADAP.2025.100.%p.