Comparative Analysis of the Highimpedance Crystallike Ingomogenities Effectiveness
DOI:
https://doi.org/10.20535/RADAP.2015.63.76-85Keywords:
electromagnetic crystal, frequency selective devices, wave impedance, highimpedance EC-inhomogeneity, coefficient of transmissionAbstract
Introduction. The actuality of the highefficient crystallike ingomogenities development is shown. Traditional microstrip (MS) and electromagnetic (EC) ingomogenities. Comparative effectiveness analysis of the traditional highimpedance microstrip and EC-inhomogeneities is conducted, the attention to the effectiveness limitations is noted.Comparative analysis of the traditional and three-dimensional EC-inhomogeneities effectiveness. It is shown that the three-dimensional inhomogeneities is more efficient wavereflector than traditional inhomogeneities.
Three-dimensional EC-inhomogeneities with unrectilinear signal conductor. Mutual comparative effectiveness analysis of three-dimensional EC-inhomogeneities with different design implementation of the signal conductor is done. It is shown that three-dimensional EC-inhomogeneities effectiveness is large at about 2,4...3,1 and 1,4...1,8 times in comparison with MS- and typical two-dimensional EC-inhomogeneities, respectively. The wave deceleration in three-dimensional EC-inhomogeneity with zigzag signal conductor is more than 1.5, 2.1 and 2.6 times compared to MSL-inhomogeneity, typical two-dimensional EC-inhomogeneity and three-dimensional EC-inhomogeneity with a straight conductor, respectively.
Conclusions. The considered three-dimensional EC- inhomogeneities with differing constructive and electric parameters, allow realizing highly effective microstrip devices in various constructive solutions.
References
Перелік посилань
Maagt P. Review of electromagnetic bandgap technology and applications [Електронний ресурс] / P. de Maagt, R. Gonzalo, J. Vardaxoglou // Radio Science Bulletin, 309, pp. 11-24. – Режим доступу: http://antenas.unavarra.es/Publicaciones/Images/Pub79.pdf
Адаменко Ю. Ф. Пристрої фільтрації на основі аподизованих електромагнітних кристалів: автореф. дис. на здобуття наук. ступеня канд. техн. наук : 05.02.13 / Нац. техн. ун-т. України "Київ. політехн. ін-т." – Київ, 2014. – 24с.
Назарько А. И. Повышение зонной избирательности микрополосковых аналогов фотонных кристаллов / А. И. Назарько, Ю. Ф. Тимофеева, Е. А. Нелин, В. И. Попсуй // Технология и конструирование в электронной аппаратуре. – 2009. – № 6. – С. 38–41.
Патент України на корисну модель UA53885U, МПК9 H01P3/08 Фотоннокристалічний пристрій / Ю. Ф. Тимофєєва, А. І. Назарько, Є. А Нелін, В. І. Попсуй. – U201003531; заявл. 26.03.2010; опубл. 25.10.2010; Бюл. №20.
Патент України на корисну модель UA64315U, МПК H01P3/00 Електромагнітнокристалічний відбивач / А. І. Назарько, Є. А. Нелін, Ю. Ф. Тимофєєва. – U201102535; заявл. 03.03.2011; опубл. 10.11.2011; Бюл. №21.
Патент України на корисну модель UA78246U, МПК H01P3/00 Електромагнітнокристалічний відбивач / А. І. Назарько, Є. А. Нелін, В. І. Попсуй, Ю. Ф. Тимофєєва. – U201211068; заявл. 24.09.2012; опубл. 11.03.2013; Бюл. №5.
Беляев Б. А. Исследование микрополосковых аналогов полосно-пропускающих фильтров на одномерных фотонных кристаллах / Б. А. Беляев, А. С. Волошин, В. Ф. Шабанов // Радиотехника и электроника. – 2006. – Т. 51, №6. – C. 694-701.
Rumsey I. Photonic bandgap structures used as filters in microstrip circuits / I. Rumsey, M. Piket-May, P. K. Kelly // IEEE MWCL. – 1998. – Vol. 8, No 10. – pp. 336-338.
Erro M. J. Phase-reconstruction in photonic crystals from S-parameter magnitude in microstrip technology / M. J. Erro, I. Arnedo, M. A. G. Laso, T. Lopetegi, M. A. Muriel // Opt Quant Electron. – 2007. – No 39. – pp. 321-331. DOI 10.1007/s11082-007-9079-3.
Weng L. H. An overview on defected ground structure / L. H. Weng, Y. C. Guo, X. W. Shi, X. Q. Chen // PIER B. – 2008. – Vol. 7. – P. 173-189. DOI:10.2528/PIERB08031401.
Биденко П. С. Квазисосредоточенные реактивные элементы на основе кристаллоподобных неоднородностей / П. С. Биденко, Е. А. Нелин, А. И. Назарько, Ю. Ф. Адаменко // Известия вузов. Радиоэлектроника. – 2015. – Т. 58, № 11. – С. 49–56.
Hong J.-S. Microstrip Filters for RF/Microwave Applications / J.-S. Hong, M. J. Lancaster. – John Wiley & Sons Inc., 2001. – 457 c.
Park J. Design of a novel harmonic-suppressed microstrip low-pass filter / J. Park, J.-P. Kim, S. Nam // IEEE MWCL. – 2007. – Vol.17, No 6. – pp. 424426.
References
Maagt P. de, Gonzalo R. and Vardaxoglou J. (2004) Review of Electromagnetic Bandgap Technology and Applications. Radio Science Bulletin, 309, pp. 11-24.
Adamenko Yu. F. (2014) Prystroi filtratsii na osnovi apodyzovanykh elektromahnitnykh krystaliv [Filtration devices based on electromagnetic apodized crystal]. Kyiv, NTUU "KPI", 24 p.
Nazarko A. I., Timofeeva J. F., Nelin E. A. and Popsuj V. I. (2009) Improvement of band selectivity of electromagnetic crystals. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, No 6, pp. 38-41.
Tymofieieva Yu. F., Nazarko A. I., Nelin Ye. A. and Popsui V. I. (2010) Fotonnokrystalichnyi prystrii [Photonic crystal device]. Patent UA 53885 U.
Nazarko A. I., Nelin Ye. A. and Tymofieieva Yu. F. (2011) Elektromahnitnokrystalichnyi vidbyvach [Electromagnetic crystal reflector]. Patent UA 64315U.
Nazarko A. I., Nelin Ye. A., Popsui V. I. and Tymofieieva Yu. F. (2011) Elektromahnitnokrystalichnyi vidbyvach [Electromagnetic crystal reflector]. Patent UA 78246U.
Belyaev B. A., Voloshin A. S. and Shabanov V. F. (2006) Analysis of Microstrip Analogues of Bandpass Filters on One-Dimensional Photonic Crystals. Journal of Communications Technology and Electronics, vol. 51, no. 6, pp. 653-659.
Rumsey I., Piket-May M. and Kelly P. K. (1998) Photonic bandgap structures used as filters in microstrip circuits. IEEE Microwave and Guided Wave Letters, Vol.8, No 10, pp. 336-338.
Erro M. J., Arnedo I., Laso M. A. G., Lopetegi T. and Muriel M. A. (2007) Phase-reconstruction in photonic crystals from S-parameter magnitude in microstrip technology. Opt Quant Electron, Vol 39, Iss. 4, pp. 321-331. DOI 10.1007/s11082-007-9079-3.
Weng L. H., Guo Y. C., Shi X. W. and Chen X. Q. (2008) An overview on defected ground structure. PIER B, Vol. 7, pp. 173-189. DOI:10.2528/PIERB08031401.
Bidenko P. S., Nelin E. A., Nazarko A. I. and Adamenko Y. F. (2015) Quasi-lumped reactive elements based on crystal-like discontinuities. Radioelectronics and Communications System, Vol. 58, No 11, pp. 515-521. DOI: 10.3103/S0735272715110059
Hong J.-S. and Lancaster M. J. (2001) Microstrip filters for RF/microwave applications, John Wiley & Sons, 457 p.
Park J., Kim J.-P. and Nam S. (2007) Design of a novel harmonic-suppressed microstrip low-pass filter. IEEE Microwave and Wireless Components Letters, Vol.17, Iss. 6, pp. 424-426. DOI: 10.1109/LMWC.2007.897789
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).