Impedance models of double well structures

Authors

DOI:

https://doi.org/10.20535/RADAP.2015.60.131-140

Keywords:

double well structure, impedance delta-inhomogeneity, input impedance

Abstract

Introduction. In this paper the impedance models double well structures (DWS) which is based on δ-inhomogeneities and rectangular potential are developed. The models of double well potential which is based on δ-functions and rectangular depending allow to obtain analytical solutions and to investigate important features of DWS.
Analogy of double well structure and coupled oscillatory circuits. The analogy of DWS and coupled oscillatory circuits are considered. It is presented comparison the Schrödinger equation for the wave function and the equation for the current circuit without loss. It is shown that DWS as the system with two states performs the function of logical operations similar bits in classical computer.
Models based on the impedance δ-inhomogeneities. Two models of DWS based on the impedance δ-inhomogeneities: δ-barrier in the potential well and two δ-wells are developed. The analytical expressions for input impedance and eigenvalues are received and investigated. It is shown that characteristics of DWS with finite size and δ-inhomogeneities agree well.
Eigenvalues of asymmetric double well structure. The most general case of asymmetric DWS with a rectangular potential is considered. The eigenvalues of such a structure on the basis of a generalized model of barrier structures are found. Dependences of eigenvalues of symmetric and asymmetric DWS are presented.
Conclusions. Impedance models allow to obtain the analytical solutions with substantial generalization problems in comparison with known traditionally solved problems. By analysis of input impedance characteristics conditions for the eigenvalues DWS placed between environments with different wave impedance are received.

Author Biographies

M. A. Gindikina, National Technical University of Ukraine, Kyiv Politechnic Institute, Kiev

Gindikina M. A., undergraduate student

M. V. Vodolazka, National Technical University of Ukraine, Kyiv Politechnic Institute, Kiev

Vodolazka M. V., postgraduate student

Yu. F. Adamenko, National Technical University of Ukraine, Kyiv Politechnic Institute, Kiev

Adamenko Yu. F., PhD, Associate Professor

E. A. Nelin, National Technical University of Ukraine, Kyiv Politechnic Institute, Kiev

Nelin E. A., Doctor of Engineering, Professor

References

Перелік посилань

Фейнман Р. Фенмановские лекции по физике. Квантовая механика (вып. 8, 9) / Р. Фейнман, Р. Лейтон, М. Сэндс. – М. : Мир. – 1978. – 524 с.

Jelic V. The double well potential in quantum mechanics: a simple, numerically exact formulation / V. Jelic, F. Marsiglio // Eur. J Phys. – 2012. – Vol. 33, No. 6. – P. 1651-1666.

Hasegawa H. Bound states of the one-dimensional Dirac equation for scalar and vector double square-well potentials / H. Hasegawa // Physica E. – 2014. – Vol. 59. – P. 192-201.

Markos P. Wave Propagation From Electrons to Photonic Crystals and Left-Handed Materials / P. Markos, C. M. Soukoulis. – Princeton and Oxford: Princeton University Press, 2008. – 352 p.

Basdevant J.-L. Lectures on Quantum Mechanics. / J. L. Basdevant. – N. Y. : Springer, 2007. – 308 р.

Khondker A. N. Transmission line analogy of resonance tunneling phenomena: the generalized іmpedance concept / A. N. Khondker, M. R. Khan, A. F. M. J. Anwar // J. Appl. Phys. – 1988. – Vol. 63, No. 10. – P. 5191-5193.

Нелин Е. А. Импедансная модель для “барьерных” задач квантовой механики / Е. А. Нелин // УФН. – 2007. – Т. 177, №3. – С. 307-313.

Нелін Є.А. Квантово-механічні структури з дельта-функціональним потенціалом / Є.А. Нелін, М.В. Водолазька // Наукові вісті НТУУ "КПІ". - 2013. - № 4. - с. 137-144.

Спроул Р. Современная физика / Р. Спроул. – М. : Наука, 1974. – 296 с.

Валиев К. А. Квантовые компьютеры и квантовые вычисления / К. А. Валиев // УФН. – 2005. – Т. 175, № 1. – С. 3–39.

Менский М. Б. Квантовая механика: новые эксперименты, новые приложения и новые формулировки старых вопросов / М. Б. Менский // УФН. – 2000. – Т. 170, № 6. – С. 631-648.

Водолазская М. В. Модель импедансных дельта-неоднородностей для микро- и наноструктур / М. В. Водолазская, Е. А. Нелин // Известия вузов. Радиоэлектроника. – 2014. – Т. 57, № 5. – С. 25-34.

Нелин Е. А. Импедансные условия резонансного прохождения и резонансной локализации волн в барьерных структурах / Е. А. Нелин // ЖТФ. – 2011. – Т. 81, № 1. – С. 137-139.

Галицкий В. М. Задачи по квантовой механике // В. М. Галицкий, Б. М. Карнаков, В. И. Коган. – М. : Наука, 1981. – 658 с.

References

Feinman R., Leiton R. and Sends M. (1978) Fenmanovskie lektsii po fizike. Kvantovaya mekhanika (vyp. 8, 9) [Fenman’s lectures on physics. Quantum mechanics (Vol. 8, 9)]. Moscow, Mir Publ, 524 p.

Jelic V. and Marsiglio F. (2012) The double well potential in quantum mechanics: a simple, numerically exact formulation. Eur. J Phys., vol. 33, no. 6, pp. 1651–1666.

Hasegawa H. (2014) Bound states of the one-dimensional Dirac equation for scalar and vector double square-well potentials. Physica E., vol. 59, pp. 192–201.

Markos P. and Soukoulis C. M. (2008) Wave Propagation From Electrons to Photonic Crystals and Left-Handed Materials. Princeton and Oxford: Princeton University Press, 352 p.

Basdevant J.-L. (2007) Lectures on Quantum Mechanics. New York, Springer, 308 р.

Khondker A. N., Khan M. R. and Anwar A. F. M. J. (1988) Transmission line analogy of resonance tunneling phenomena: the generalized іmpedance concept. J. Appl. Phys., vol. 63, no. 10, pp. 5191–5193.

Nelin E.A. (2007) Impedance model for quantum-mechanical barrier problems. Phys. Usp., vol. 50, no. 3, pp. 293-299.

Nelin E.A. and Vodolazska M.V. (2013) Quantum-Mechanical Structures with Delta-Functional Potential. Naukovi visti NTUU KPI, no. 4, pp. 137-144.

Sproul R. (1974) Sovremennaya fizika [Modern physics]. Moskow, Nauka, 296 p.

Valiev K. A. (2005) Quantum computers and quantum computations. Phys. Usp., vol. 48, pp. 1 – 36.

Menskii M. B. (2000) Quantum mechanics: new experiments, new applications, and new formulations of old questions. Phys. Usp., vol. 43, pp. 585- 600.

Vodolazka, M. and Nelin, E. (2014) Model of impedance delta-inhomogeneities for micro- and nanostructures. Radioelectronics and Communications Systems. Vol. 57, No 5. pp. 208-216.

Nelin E. A. (2011) Impedance conditions for resonance propagation and resonance localization of waves in barrier structures. Technical Physic., vol. 56, no. 1, pp. 132-134.

Galitskii V. M., Karnakov B. M. and Kogan V. I. (1981) Zadachi po kvantovoi mekhanike [Tasks on quantum mechanics]. Moscow, Nauka, 658 p.

Published

2015-03-30

How to Cite

Гіндікіна, М. А., Водолазька, М. В., Адаменко, Ю. Ф. and Нелін, Є. А. (2015) “Impedance models of double well structures”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, 0(60), pp. 131-140. doi: 10.20535/RADAP.2015.60.131-140.

Issue

Section

Functional Electronics. Micro- and Nanoelectronic Technology

Most read articles by the same author(s)

1 2 > >>