One-Port Power Conservative Equivalent Circuit of DC Network with Dependent Voltage Sources

Authors

DOI:

https://doi.org/10.20535/RADAP.2021.85.5-13

Keywords:

One-port equivalent circuit, power conservative, efficiency maximization

Abstract

Known for more than a century the principle of the equivalent source, formulated in the form of Thevenen and Norton theorems, has recently been improved by introducing the requirement of energy equivalence of the primary network and its two-pole substitution circuit. Peculiarities and shortcomings of the existing two-pole substitution circuits that equivalent to the primary DC network are analyzed, and the purpose of the work is formulated: implementation of the new energy content of the equivalent source principle for the DC network’s class, containing both independent and dependent voltage sources and resistors, by developing a new two-pole substitution circuit and studying the conditions of its load coordination to achieve maximum efficiency. The first in this class four-element two-pole substitution circuit is proposed, which differs from the of Barbi’s circuit equivalent by the presence of a current source controlled by the load current, the output terminals of which are connected to the EMF source of an equivalent generator. The known formulas for calculating the element parameters of two-pole Tevenen and Barbi circuit equivalents were supplemented by new analytical dependences of the dependent current source parameter from vector and matrix coefficients of the primary circuit mesh current macromodel and experimental data of output pole rupture and closure experiments. New analytical relations have also been established for the calculations of the agreed load resistance and the maximum efficiency of the new two-pole substitution circuit. The reliability of the study results is confirmed by the equivalence of the obtained formulas with a known ratio, valid for another class of DC network, and virtual experiments to study the watt-volt characteristics and maximize the efficiency of the primary circuit. The obtained results can be used for energy optimization of DC network, the amplifying and converting elements of which are operated in a linear mode and modeled by dependent voltage sources.

References

Перелік посилань

Основи теорії кiл: Пiдручник для студентiв вищих навчальних закладiв. Ч.1/ Ю.О. Коваль, Л.В. Гринченко, I.О. Милютченко, О.I. Рибiн / За заг. редакцiєю В.М. Шокало та В.І. Правди. – X.: Компанія CMIT, 2008. – 432 с.

Alexander, Charles K. Fundamentals of electric circuits / Charles K. Alexander, Matthew N. O. Sadiku. – 5th ed. McGraw-Hill, New York, 2013, p. 992.

Новгородцев А. Б. 30 лекций по теории электрических цепей: учебник для вузов. – СПб, 1995. – 519 с.

L. Thévenin. Sur un Nouveaux Théoreme d’Electricité Dynamique, in Comptes Rendus des Séances de l’Academie des Sciences, Tome: 97, 1883.

E. L. Norton. Design of finite networks for uniform frequency characteristics, Bell Laboratories, Tech. Rep, TM26-0-1860, 1926.

V. D. Landon. The equivalent generator theorem, Proceedings of the Institute of Radio Engineers, Vol. 18, No. 2, 1930, pp. 294-297. DOI: 10.1109/JRPROC.1930.221995

A. T. Starr. A new theorem for active networks, Journal of the institution of Electrical Engineers, Volume: 73, Issue: 441, 1933, pp. 303-308. DOI: 10.1049/jiee-1.1933.0129.

J. Millman. A useful network theorem, Proceedings of the Institute of Radio Engineers, Volume: 28, Issue: 9, 1940, pp. 413–417. DOI: 10.1109/JRPROC.1940.225885.

D. H. Johnson, “Origins of the equivalent circuit concept: the voltage-source equivalent,” Proceedings of the IEEE, vol. 91, no. 4, pp. 636–640, 2003. DOI: 10.1109/JPROC.2003.811716.

D. H. Johnson, “Origins of the equivalent circuit concept: the current-source equivalent,” Proceedings of the IEEE, vol. 91, no. 5, pp. 817–821, 2003. DOI: 10.1109/JPROC.2003.811795.

I. Barbi, “Power conservative equivalent circuit for dc networks,” IEEE Access, vol. 8, pp. 113667–113674, 2020. DOI: 10.1109/ACCESS.2020.3004026.

L. Corradini, “General Power-Equivalent Synthesis of Resistive DC Networks,” IEEE Access, vol. 8, pp. 160711 - 160722, 2020. DOI: 10.1109/ACCESS.2020.3020652.

I. Barbi, “Unified Power Conservative Equivalent Circuit for DC Networks,” IEEE Access, vol. 8, pp. 178230 – 178237, 2020. DOI: 10.1109/ACCESS.2020.3027489.

Артеменко М.Ю., Петров Д.О. Енергетичні властивості двополюсної схеми заміщення електричного кола постійного струму, еквівалентної за потужністю. В зб. праць Міжнародної науково-технічної конференції РАДІОТЕХНІЧНІ ПОЛЯ, СИГНАЛИ, АПАРАТИ ТА СИСТЕМИ, 16 – 22 листопада 2020р.,м. Київ, Україна. С. 133-135.

Artemenko M., Batrak L. & Polishchuk S. New definition formulas for apparent power and active current of three-phase power system [Nowa definicja mocy pozornej i prądu czynnego w układzie trójfazowym]. Przeglad Elektrotechniczny, No. 95(8), pp. 81–85, 2019. DOI:10.15199/48.2019.08.20.

References

Koval L. V., Grinchenko I. O., Milutchenko O. I., Rybin O. I. Edited by Shokalo V. M. and Pravda V. I. Osnovy teorii kil [Basics of the electrical circuit theory]. Kharkiv, SMIT company, 2008. 432 p.

Charles K. Alexander, Matthew N. O. Sadiku. Fundamentals of electric circuits, 5th ed., McGraw-Hill, New York, 2013. 992 p.

Novgorodcev A. B. 30 lekcii po teorii elektricheskih tsepei [30 lectures on electrical circuit theory]. St.Pb, Politehnika, 1995. 519 p.

Thévenin L. Sur un Nouveaux Théoreme d’Electricité Dynamique, in Comptes Rendus des Séances de l’Academie des Sciences, Tome: 97, 1883.

Norton E. L. Design of finite networks for uniform frequency characteristics, Bell Laboratories, Tech. Rep, 1926, TM26-0-1860.

Landon V. D. (1930). The Equivalent Generator Theorem. Proceedings of the Institute of Radio Engineers, Vol. 18, No. 2, pp. 294-297. DOI: 10.1109/JRPROC.1930.221995.

Starr A. T. (1933). A new theorem for active networks. Journal of the Institution of Electrical Engineers, Volume: 73, Issue: 441, pp. 303-308. DOI: 10.1049/jiee-1.1933.0129.

Millman J. (1940). A Useful Network Theorem. Proceedings of the Institute of Radio Engineers, Volume: 28, Issue: 9, pp. 413–417. DOI: 10.1109/JRPROC.1940.225885.

Johnson D. H. (2003). Origins of the equivalent circuit concept: the voltage-source equivalent. Proceedings of the IEEE, vol. 91, no. 4, pp. 636-640. DOI: 10.1109/JPROC.2003.811716.

Johnson D. H. (2003). Origins of the equivalent circuit concept: the current-source equivalent. Proceedings of the IEEE, vol. 91, no. 5, pp. 817–821. DOI: 10.1109/JPROC.2003.811795.

Barbi I. (2020). Power Conservative Equivalent Circuit for DC Networks. IEEE Access, vol. 8, pp. 113667-113674. DOI: 10.1109/ACCESS.2020.3004026.

Corradini L. (2020). General Power-Equivalent Synthesis of Resistive DC Networks. IEEE Access, vol. 8, pp. 160711 - 160722. DOI: 10.1109/ACCESS.2020.3020652.

Barbi I. (2020). Unified Power Conservative Equivalent Circuit for DC Networks. IEEE Access, vol. 8, pp. 178230 – 178237. DOI: 10.1109/ACCESS.2020.3027489.

Artemenko M. Yu., Petrov D. O. (2020). IX International scientific and technical conference "Radioengineering Field, Signals, Devices and Systems". [Enerhetychni vlastyvosti dvopoliusnoi skhemy zamishchennia elektrychnoho kola postiinoho strumu, ekvivalentnoi za potuzhnistiu. V zb. prats Mizhnarodnoi naukovo-tekhnichnoi konferentsii RADIOTEKhNIChNI POLIa, SYHNALY, APARATY TA SYSTEMY, 16 – 22 lystopada 2020r., m. Kyiv, Ukraina., In Ukrainian], pp. 133-135.

Artemenko M., Batrak L. & Polishchuk S. (2019). New definition formulas for apparent power and active current of three-phase power system. Przeglad Elektrotechniczny, No. 95(8), pp. 81–85. DOI:10.15199/48.2019.08.20.

Published

2021-06-30

How to Cite

Артеменко , М. Ю., Петров , Д. О. and Кутафін , Ю. В. (2021) “One-Port Power Conservative Equivalent Circuit of DC Network with Dependent Voltage Sources”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, (85), pp. 5-13. doi: 10.20535/RADAP.2021.85.5-13.

Issue

Section

Radio Circuits and Signals