Microwave microstrip resonators tuning without quality factor deterioration

Authors

DOI:

https://doi.org/10.20535/RADAP.2014.56.75-87

Keywords:

resonance frequency micromechanical tuning, microstrip resonators, stub resonator, ring resonator

Abstract

Stub and ring resonators with resonance frequency micromechanical tuning are presented. Benefits and main differences of micromechanical resonance frequency tuning method from other methods are shown. Normalized dependences of effective permittivity on normalized air gap values for various microstrip line electrode width to substrate height ratios are obtained. Effective permittivity analytical formulas for the case of infinitely wide electrodes are derived. Calculated and experimental dependences of resonance frequency on air gap value and stub experimental unloaded quality factor dependences are given. Air gap influence on resonance frequency value depending on substrate permittivity is shown in terms of the resonance frequency sensitivity. Error estimation for measured experimental data is presented.
Adding tunable heterogeneity between the microstrip resonator signal electrode and the substrate provides not only the resonance frequency tuning but preserves unloaded quality factor. The preservation of the unloaded quality factor during the resonance frequency tuning achieved due to the metal and dielectric loss reduction. Air gap doesn’t have dissipative losses and has permittivity of one, which makes it the best solution for unloaded quality factor preservation. Another important conclusion is that insertion of the air heterogeneity reduces values of dielectric and metal losses arising when substrates with high permittivity are used. For dielectric loss reduction, it is important to maintain low ratio of microstrip line width to substrate height. In contrast to dielectric losses for metal loss reduction the ratio of microstrip line width to substrate height should be high. However, that ratio is limited by impedance permissible range.

Author Biographies

P. Y. Serhienko, National Technical University of Ukraine, Kyiv Politechnic Institute, Kiev

Postgraduate student

Yu. V. Prokopenko, National Technical University of Ukraine, Kyiv Politechnic Institute, Kiev

Doc. of Sci., Prof.

Yu. M. Poplavko, National Technical University of Ukraine, Kyiv Politechnic Institute, Kiev

Doc. of Sci., Prof.

References

Перелік посилань

Boutejdar A. A new design of a tunable WLAN–band pass filter using a combination of varactor device, RF–choke and Hairpin–Defected Ground Structure / A. Boutejdar, A. Omar, M. Senst, E.P. Burte, A. Batmanov, R. Mikuta // 41st European Microwave Conference (EUMC). – 2011. – pp. 1067–1070.

Lan Yao Tunable Microstrip Ring Bandpass Filter / Yao Lan, Hong Wei, Wu Ke // China–Japan Joint Microwave Conference Proceedings (CJMW). – 2011. – pp. 1–3.

Сергиенко П. Ю. Кольцевой микрополосковый резонатор с микромеханической перестройкой частоты / П.Ю. Сергиенко, Ю.В. прокопенко // Электроника и связь. – 2012. – № 4. – С. 23 – 27.

Sergienko P. Y. Novel Concept for Microstrip Stub Resonant Frequency Control / P.Y. Sergienko, Y. V. Prokopenko, G. Vandenbosch // ELNANO’2013. – 2013. – pp. 94–98.

Pillans B. W. A Family of MEMS Tunable Filters for Advanced RF Applications / B. W. Pillans, A. Malczewski, F.J. Morris, R.A. Newstrom // IEEE MTT–S International Microwave Digest Symposium. – 2011.

Прокопенко Ю. В. Пределы управляемости диэлектрической неоднородности, расположенной между металлическими плоскостями / Ю. В. Прокопенко // Технология и конструирование в электронной аппаратуре. – 2012. – № 6. – С. 16 – 20.

Sergienko P. Y. Tunable band–stop and band–pass filters based on microstrip stub resonators / P. Y. Sergienko, Y. V. Prokopenko, Y. M. Poplavko, G. Vandenbosch // 23rd International Crimean Conference Microwave and Telecommunication Technology (CriMiCo) 2013. – 2013. – pp. 649–651.

Gupta K. C., Garg Ramesh, Bahl inder, Bhartia Prakash. Microstrip lines and slotlines, Boston/London.: Artech House, 1996. – 535p.

References

Boutejdar A., Omar A., Senst M., Burte E.P., Batmanov A. and Mikuta R. (2011) A new design of a tunable WLAN–band pass filter using a combination of varactor device, RF–choke and Hairpin–Defected Ground Structure. 41st European Microwave Conference (EUMC), pp. 1067–1070.

Lan Yao, Hong Wei and Wu Ke (2011) Tunable Microstrip Ring Bandpass Filter. China–Japan Joint Microwave Conference Proceedings (CJMW), pp. 1–3.

Sergienko P.Y. and Prokopenko Y.V. (2012) Kol'cevoj mikropoloskovyj rezonator s mikromehanicheskoj perestrojkoj chastity. Electronics and communications, No 4. pp. 23–27.

Sergienko P.Y., Prokopenko Y.V. and Vandenbosch G. (2013) Novel Concept for Microstrip Stub Resonant Frequency Control. Electronics and Nanotechnology (ELNANO), pp. 94–98.

Pillans B.W., Malczewski A., Morris F.J. and Newstrom R.A. (2011) A Family of MEMS Tunable Filters for Advanced RF Applications. IEEE MTT–S International Micro-wave Digest Symposium, pp. 1 – 4.

Prokopenko Yu.V. (2012) Predely upravljaemosti dijelektricheskoj neodnorodnosti, raspolozhennoj mezhdu metallicheskimi ploskostjami. Tehnologiya i konstruirovanie v elek-tronnoi apparature, No 6, pp. 16–20.

Sergienko P.Yu., Prokopenko Yu.V., Poplavko Yu.M. and Vandenbosch G. (2013) Tunable band–stop and band–pass filters based on microstrip stub resonators. Microwave and Telecommunication Technology (CriMiCo-2013), pp. 649–651.

Gupta K.C., Garg Ramesh, Bahlinder, Bhartia Prakash (1996) Microstrip lines and slotlines, Boston/London, Artech House, 1996. 535p.

Published

2014-04-10

How to Cite

Сергієнко, П. Ю., Прокопенко, Ю. В. and Поплавко, Ю. М. (2014) “Microwave microstrip resonators tuning without quality factor deterioration”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, 0(56), pp. 75-87. doi: 10.20535/RADAP.2014.56.75-87.

Issue

Section

Electrodynamics. Microwave devices. Antennas