Сriteria of crystal-like structures approaching by impedance delta-inhomogeneities lattices
DOI:
https://doi.org/10.20535/RADAP.2016.67.58-64Keywords:
crystal-like structure, impedance delta-inhomogeneityAbstract
Introduction. Crystal-like structures (CS) have unique, similar to crystals, band spectral characteristics and form the basis of new various signal processing devices. In this paper the criteria of CS approaching by δ-inhomogeneities lattices are established.Wave mediums of crystal-like structures. Quantum-mechanical, electromagnetic and acoustic wave mediums are considered and expressions for impedance δ-barriers and δ-wells input impedances and admittance are described.
Unlimited impedance δ-wells lattices. Features of impedance δ-wells lattice are considered. Expression for input impedance of impedance δ-wells lattice is obtained. Active and reactive input impedance components characteristics of unlimited impedance δ-inhomogeneities lattices are presented.
Unlimited crystal-like structures approaching. Comparative analysis of input impedance components characteristics of unlimited CSs and δ-inhomogeneities lattices are considered. Criteria of unlimited CSs approaching by δ-inhomogeneities lattices are established.
Limited crystal-like structures approaching. Comparative analysis of input impedance components characteristics of limited CSs and δ-inhomogeneities lattices are considered. Criteria of limited CSs approaching by δ-inhomogeneities lattices are established.
Conclusions. Criteria for unlimited and limited CS approaching by δ-inhomogeneities lattices limiting CS inhomogeneity width by one-fourth of the wavelength and normalized wave impedance of electromagnetic and acoustic inhomogeneities by values of not less than 3 or not more than 1/3. These criteria determine range of modeling ― energy for quantum-mechanical CSs and frequency for electromagnetic and acoustic CSs accordingly.
References
Перелiк посилань
Razeghi M. The Wonder of Nanotechnology: Quantum Optoelectronic Devices and Applications / M. Razeghi, L. Esaki, K. von Klitzing, eds. – Bellingham: SPIE Press. – 2013. – 1000 p.
Massaro A. Photonic Crystals – Introduction, Applications and Theory / A. Massaro, ed. – Publisher: InTech. – 2012. – 356 p.
Khelif A., Adibi A. Phononic Crystals: Fundamentals and Applications / Khelif A., Adibi A., eds. – N. Y.: Springer. – 2015. – 268 р.
Brillouin L. Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices / L. Brillouin. – N. Y. : McGraw–Hill. – 1946 (1st ed.); Dover. – 1953 (2nd ed. corrections and additions); Courier Corporation (unabridged republication of 2nd ed.). – 2003. – 260 p.
Бриллюэн Л. Волны в перидических структурах / Л. Бриллюэн, М. Пароди. – М. : Изд. иностр. лит. – 1956. – 457 с.
Markos P. Wave Propagation From Electrons to Photonic Crystals and Left-Handed Materials / P. Markos, C. M. Soukoulis. – Princeton and Oxford: Princeton University Press. – 2008. – 352 p.
Нелин Е. А. Моделирование и повышение избирательности кристаллоподобных структур / Е. А. Нелин // ЖТФ. – 2004. – Т. 74, № 11. – С. 70-74.
Нелин Е. А. Краевая аподизация кристаллоподобных структур / Е. А. Нелин // ЖТФ. – 2005. – Т. 75, № 11. – С. 120-121.
Водолазская М. В. Модель импедансных дельта-неоднородностей для микро- и наноструктур / М. В. Водолазская, Е. А. Нелин // Известия вузов. Радиоэлектроника. – 2014. – Т. 57, № 5. – С. 25-34.
References
Razeghi M., Esaki L. and Klitzing K. (2013) The Wonder of Nanotechnology: Quantum Optoelectronic Devices and Applications , Bellingham, SPIE Press, 1000 p. DOI: 10.1117/3.1002245
Massaro A. (2012) Photonic Crystals – Introduction, Applications and Theory, InTech Publisher, 356 p. DOI: 10.5772/1971
Khelif A. and Adibi A. (2015) Phononic Crystals: Fundamentals and Applications , N. Y., Springer, 268 p. DOI: 10.1007/978-1-4614-9393-8
Brillouin L. (2003) Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices, 2nd ed , Dover Publications, 260 p.
Brillouin L. and Parodi M. (1956) Propagation des ondes dans les milieux pДerodiques . Paris, Masson et Cie, 347 p.
Markos P. and Soukoulis C. M. (2008) Wave Propagation From Electrons to Photonic Crystals and Left-Handed Materials . Princeton and Oxford: Princeton University Press, 352 p. DOI: 10.1515/9781400835676
Nelin E. A. (2004) Simulation and improvement of the selectivity of crystal-like structures. Tech. Phys. , Vol. 49, No. 11, pp. 1464-1468. DOI: 10.1134/1.1826191
Nelin E. A. (2005) Edge apodization of crystal-like structures. Tech. Phys. , vol. 50, no. 11, pp. 1511-1512. DOI: 10.1134/1.2131963
Vodolazka M. V. and Nelin E. A. (2014) Model of impedance delta-inhomogeneities for micro- and nanostructures. Radioelectronics and Communications Systems, Vol. 57, No. 5. pp. 208-216. DOI: 10.3103/s0735272714050033
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).