Study of capabilities of unmanned aerial vehicle sound location in the tasks of the monitoring of terroristic threats

Authors

  • V. V. Orlov National Academy of State Border Service of Ukraine
  • M. I. Lysyi National Academy of State Border Service of Ukraine
  • V. A. Sivak National Academy of State Border Service of Ukraine
  • D. A. Kuprienko National Academy of State Border Service of Ukraine
  • V. M. Kulchytcskyi National Academy of State Border Service of Ukraine
  • A. B. Dobrovolskyi National Academy of State Border Service of Ukraine

DOI:

https://doi.org/10.20535/RADAP.2019.79.24-32

Keywords:

moving object, unmanned aerial vehicle, sound location, time delay, Doppler frequency, fast Fourier transform

Abstract

Introduction. The article is devoted to the research of sound location systems of unmanned aerial vehicles that are protected from means of radio electronic warfare for monitoring the terrorist threats. In the work the sound location system is proposed for detection of moving objects that is made with the help of a sensors network placed in space.
Research results. The main difference from the existing sound location systems is the determination of the time delay not by the mutual correlation function, but by the mutual function of the signals uncertainty between the sensors. However, the application of the method of the mutual function of uncertainty is limited only to the definition of characteristics for the one-purpose situation, it means it is impossible to estimate the coordinates in case of two targets, and accordingly, in the multi-purpose situation, during the attack of a large number of unmanned aerial vehicles. Also, there is a computational complexity of processing the broadband signals in time, spectral and Doppler spheres. If for fixed targets it’s sufficient to process in the spectral-time sphere on the basis of a fast Fourier transform, then for mobile targets, additional multichannel processing of the Doppler frequencies is required. Since the number of Doppler channels is comparable to the size of the sample, that’s why the computing costs increase substantially in several times, so for real-time sound system operation it is expedient to develop software with parallel programming, Openmp library, graphics card with vector and matrix data processing, GPU NVIDIA based on CUDA technology. This will accelerate the execution of operations approximately by 30 times and ensure the implementation of systems on laptops.
Conclusions. The conducted analysis of the sound location system showed the potential possibilities of determining the coordinates of unmanned aerial vehicles and other moving objects in a three-dimensional space with an accuracy that is sufficient for further support of the targets by means of visual observation.

Author Biographies

V. V. Orlov , National Academy of State Border Service of Ukraine

Orlov V. V., Cand. of Sci (Techn)

M. I. Lysyi , National Academy of State Border Service of Ukraine

Lysyi M. I., Cand. of Sci (Techn), Asoc. Prof.

V. A. Sivak , National Academy of State Border Service of Ukraine

Sivak V. A., Cand. of Sci (Techn), Asoc. Prof.

D. A. Kuprienko , National Academy of State Border Service of Ukraine

Kuprienko D. A., Doc. of Sci (Millitary), Asoc. Prof.

V. M. Kulchytcskyi , National Academy of State Border Service of Ukraine

Kulchytcskyi V. M., Cand. of Sci (Techn)

A. B. Dobrovolskyi, National Academy of State Border Service of Ukraine

Dobrovolskyi A. B., Cand. of Sci (Techn)

References

Перелік посилань

Даник Ю.Г. Аналіз ефективності виявлення тактичних безпілотних літальних апаратів пасивними та активними засобами спостереження / Ю.Г. Даник, М.В. Бугайов // Збірник наукових праць ЖВІ ДУТ. - 2015. - Вип. 10. - С. 5-20.

Самохин В. Ф. Экспериментальное исследование источников шумности беспилотного летательного аппарата с винто-кольцевым движителем в толкающей компоновке / В. Ф. Самохин, С. П. Остроухов, П. А. Мошков~// Электронный журнал «Труды МАИ». - 2013. - Вып. №70. - C. 1-24.

Sinibaldi G. Experimental analysis on the noise of propellers for small UAV / G. Sinibaldi, L. Marino // Applied Acoustics. 2013. - Vol. 74, Iss. 1. - pp. 79-88.

Українське РАЗК «Положення-2» -- електронні «вуха» для артилеристів. -

Режим доступу: http://uprom.info/news/ukrayinski-elektronni-vuha-dlya-artileristiv/

Корольов Р.В. Аналіз сучасних засобів знищення безпілотних літальних апаратів / Р.В. Корольов, Н.О. Королюк, О.В. Петров, К.В. Сюлев // Збірник наукових праць Харківського національного університету Повітряних Сил.~–- 2017. - № 4(53). - с. 17-21.

Кирсанов Э.А. Обработка информации в пространственно-распределенных системах радиомониторинга. Статистический и нейросетевой подходы / Э.А. Кирсанов, А.А. Сирота. - М. : ФИЗМАТЛИТ, 2012. - 344 с.

Лантвойт О.Б. Аналіз методів і розробка нового технічного рішення визначення місцеположення об’єкта пасивними засобами локації / О.Б. Лантвойт, М.І. Лисий, І.М. Плосконос // Системи озброєння та військова техніка. - 2010. - Вип. 1 (21). - С. 170-174.

Гурман І.В. Розробка методу зменшення неоднозначності визначення координат наземних об’єктів трипозиційною пасивною системою радіотехнічного контролю / І.В. Гурман, М.І. Лисий, В.В. Орлов // Вісник Національного технічного університету України "Київський політехнічний інститут". Серія Радіотехніка. Радіоапаратобудування. - 2013. - № 52. - С. 23-29.

Martín S. R. Aircraft localization using a passive acoustic method. Experimental test / S. R. Martín et al. // Aerospace Science and Technology. - 2016. - Vol. 48. - p. 246-253.

Saratsyn R. Determination of aircraft current location on the basis of its acoustic noise / R. Saratsyn, F. Yanovsky, E. Chervoniak, O. Zaporozhets // Telecommunications and Radioengineering. - 2015. - Vol. 74 (5). - p. 397-408.

Gembris D. Correlation analysis on GPU systems using NVIDIA’s CUDA / D. Gembris, M. Neeb, M. Gipp, A. Kugel, R. Ma¨nner // Journal of Real-Time Image Processing. - 2011. - Vol. 6, No 4. - p. 275-280.

Yamamoto M. Localization of multiple environmental sound sources by music method with weighted histogram~/ M. Yamamoto, Yo. Tatekura // Inter-noise 2014. - p. 1-9.

STANAG 4671 Ed: 1. UAV SYSTEM AIRWORTHINESS REQUIREMENTS (USAR). URL: http://www.dror-aero.com/link/usar_edition_1.pdf

References

Danyk Yu.H. and Buhaiov M.V. (2015) Analysis of the effectiveness of tactical unmanned aerial vehicles detection by passive and active means of observation. Problemy stvorennia, vyprobuvannia, zastosuvannia ta ekspluatatsii skladnykh informatsiinykh system, Iss. 10, pp. 5-20.

Samokhin V. F., Ostrouhov S. P. and Moshkov P. A. (2013) Experimental Research of Pilotless Vehicle Noise Sources with a Pusher Ducted Propeller. Trudy MAI, 2013, No 70, pp. 1-24.

Sinibaldi G. and Marino L. (2013) Experimental analysis on the noise of propellers for small UAV. Applied Acoustics, Vol. 74, Iss. 1, pp. 79-88. DOI: 10.1016/j.apacoust.2012.06.011

Ukrainian reconnaissance automated sound ranging system «Polozhennia-2» – electronic ``ears'' for artillerists. Available at: https://uprom.info/news/ukrayinski-elektronni-vuha-dlya-artileristiv/

Korolev R. , Koroluk N., Petrov O. and Sulev K. (2017) Analysis of modern means of destruction of unbeiled flying apparatuses, Zbirnyk naukovykh prats Kharkivskoho universytetu Povitrianykh Syl, No 4 (53), pp. 17-21.

Kirsanov E.A. and Sirota A.A. (2012) Obrabotka informatsii v prostranstvenno-raspredelennykh sistemakh radiomonitoringa. Statisticheskii i neirosetevoi podkhody [Information processing in spatially distributed radio monitoring systems. Statistical and neural network approaches], Moskow, Fizmatlit, 344 p.

Lantvoit O.B., Lysyi M.I. and Ploskonos I.M. (2010) The analysis of methods and development of the new technical decision of definition of a site of object by passive means of a location, Systemy ozbroiennia i viiskova tekhnika, No 1 (21), pp. 170-174.

Gurman I. V., Lysyu N. I. and Orlov V. V. (2013) Development of ambiguity reducing method for determining of the ground objects coordinates by three-position passive radiocontrol system, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, Iss. 52, pp. 74-83. doi: 10.20535/RADAP.2013.52.74-83.

Martín S.R., Genescà M., Romeu J. and Clot A. (2016) Aircraft localization using a passive acoustic method. Experimental test. Aerospace Science and Technology, Vol. 48, pp. 246-253. DOI: 10.1016/j.ast.2015.11.023

Sinitsyn R.B., Yanovsky F.J., Chervoniak E. and Zaporozhets O. (2015) Determination of aircraft current location on the basis of its acoustic noise. Telecommunications and Radio Engineering, Vol. 74, Iss. 5, pp. 397-408. DOI: 10.1615/telecomradeng.v74.i5.30

Gembris D., Neeb M., Gipp M., Kugel A. and Männer R. (2011) Correlation analysis on GPU systems using NVIDIA’s CUDA. Journal of Real-Time Image Processing, Vol. 6, Iss. 4, pp. 275-280. DOI: 10.1007/s11554-010-0162-9

Yamamoto M. and Tatekura Yo. (2014) Localization of multiple environmental sound sources by music method with weighted histogram. Inter-noise 2014, p. 1-9.

STANAG 4671 Ed: 1. UAV SYSTEM AIRWORTHINESS REQUIREMENTS (USAR) (Requirements to airworthiness systems of unmanned aerial vehicles). URL: http://www.dror-aero.com/link/usar_edition_1.pdf

Published

2019-09-12

How to Cite

Орлов, В. В., Лисий, М. І., Сівак, В. А., Купрієнко, Д. А., Кульчицький, В. М. and Добровольський, А. (2019) “Study of capabilities of unmanned aerial vehicle sound location in the tasks of the monitoring of terroristic threats”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, (79), pp. 24-32. doi: 10.20535/RADAP.2019.79.24-32.

Issue

Section

Telecommunication, navigation, radar systems, radiooptics and electroacoustics