Determination of homogeneity zone of controlled quasistatic electric field in the area with the ring multiply boundary
DOI:
https://doi.org/10.20535/RADAP.2011.46.22-34Keywords:
electric field, the potential of electric field, homogeneity area, rotated field, discrete field rotation, continuous field rotation, complex variable function, spatial harmonicsAbstract
The analysis and calculation of zone homogeneity of controlled (rotated) quasi-static electric field in the interior of the open area with circular multiply connected boundary and of equal length, depending on connectivity order of the boundaries, of the distribution of potential on the boundary curves and a length limit to the length of the arc gap between the arcs was held. Mathematical expressions are presented, both in the form of a complex variable, and in the form of a sum of spatial harmonics. It is shown that a high degree of uniformity can be realized with continuous field rotation, herewith, if more marginal arcs of a circle would be, the larger area of homogeneity could be obtained. To implement the continuous rotation of the fields at the arc boundary the harmonic voltage must be submitted with phase shift at each arc boundary equal to the angle between the centers of the arc boundaries.References
Зиньковский Ю.Ф., Сидорук Ю.К., Голощапо в А.В. Задача сопряжения в расчётах напряженности и потенциала электрического поля кольцевой многосвязной структуры//Изв.ву зов. Радиотехника. 2007, №5, с.76–80.
Зиньковский Ю.Ф., Сидорук Ю.К., Голощапов А.В. Напряженность электрического поля в области с кольцевой многосвязной границей и равными длинами граничных дуг//Изв.вузов. Радиотехника. 2009, №2, с.14–22.
Зиньковский Ю.Ф., Сидорук Ю.К., Голощапов А.В. Представление напряжённости электрического поля и потенциала в области с кольцевой n-связной границей в виде суммы пространственных гармоник//Изв. вузов. Радиотехника. 2009, Т. 52, №7, с.11–19.
Градштейн И.С., Рыжик И.М.. Таблицы интегралов, сумм, рядов и произведений. – М; Наука. 1971. 1108 с.
Лаврентьев М.А., Шабат Б.В. Методы теории функций комплексного переменного. – СПб.; Лань. 2002. 688 с.
Мусхелишвили Н.И. Сингулярные интегральные уравнения: Граничные задачи теории функций и некоторые их приложения к математической физике. М.; Наука.1968, 512 с.
Downloads
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).