# Equivalent Microwave Circuit Technique for Waveguide Iris Polarizers Development

## DOI:

https://doi.org/10.20535/RADAP.2020.83.17-28## Keywords:

polarizer, waveguide polarizer, iris polarizer, circular polarization, scattering matrix, transmission matrix, differential phase shift, voltage standing wave ratio, axial ratio, crosspolar discrimination## Abstract

The increase of information volumes, which are transmitted in modern satellite telecommunication systems, requires the development of new signal processing technologies, microwave devices, antenna systems and methods of their analysis. In particular, polarization-adaptive antennas are widely used for this purpose. Such antennas provide the possibility to transmit and receive radio signals with polarization of any type. Polarization processing devices of antenna systems must provide low levels of voltage standing wave ratio of waves with horizontal and vertical linear polarizations and high crosspolar discrimination simultaneously. Therefore, there is the need to improve designs and methods of analysis of modern polarization processing devices.

Polarizers based on a square waveguides with irises are widely used due to the simplicity of their design and manufacturing by milling technology. The article considers a new mathematical model of waveguide polarizers with reactive irises. For the example of model application we have simulated and optimized a polarizer based on a square waveguide with four irises. A mathematical model of this waveguide polarizer was developed based on the description of microwave devices and their elements by wave scattering and transmission matrices. The general scattering matrix of the polarizer has been obtained analytically. The main electromagnetic characteristics of the polarizer were determined based on the elements of this matrix. As a result, we have analyzed main characteristics of the model, including differential phase shift, voltage standing wave ratio for vertical and horizontal polarizations, axial ratio and crosspolar discrimination. The optimization of the characteristics of a polarizer has been performed using the developed mathematical model and a software based on the finite integration technique. The optimal characteristics and geometrical sizes of the structure are in good agreement, which proves the correctness of the developed mathematical model of square waveguide iris polarizers.

## References

Virone G., Tascone R., Peverini O. A., Addamo G. and Orta R. (2008) Combined phase shift waveguide polarizer. *IEEE Microwave and Wireless Components Letters*, Vol. 18, No. 8., pp. 509-511. DOI: 10.1109/LMWC.2008.2001005.

Ruiz-Cruz J. A., Fahmi M. M., Fouladi S. A., Mansour R. R. (2011) Waveguide antenna feeders with integrated reconfigurable dual circular polarization. *IEEE Transactions on Microwave Theory and Techniques*, Vol.59, No. 12., pp. 3365-3374. DOI: 10.1109/TMTT.2011.2170581.

Hwang S.-M., Kim J.-M. and Lee K.-H. (2012) Study on design parameters of waveguide polarizer for satellite communication, *IEEE Asia-Pacific Conference on Antennas and Propagation*, pp. 153-154. DOI: 10.1109/APCAP.2012.6333202.

Chung M.-H., Je D.-H. and Han S.-T. (2014) Development of a 85-115 GHz 90-deg phase shifter using corrugated square waveguide, *European Microwave Conference*, pp. 1146-1149. DOI: 10.1109/EuMC.2014.6986643.

Dubrovka F. F., Piltyay S. I. (2017) Novel high performance coherent dual-wideband orthomode transducer for coaxial horn feeds. *2017 XI IEEE International Conference on Antenna Theory and Techniques (ICATT)*, pp. 277-280. DOI: 10.1109/ICATT.2017.7972642.

Pollak A. W. and Jones M. E. (2018) A compact quad-ridge orthogonal mode transducer with wide operational bandwidth, *IEEE Antennas and Wireless Propagation Letters*, Vol. 17, No. 3., pp. 422–425. DOI: 10.1109/LAWP.2018.2793465.

Agnihotri I. and Sharma S. K. (2019) Design of a compact 3D metal printed Ka-band waveguide polarizer, *IEEE Antennas and Wireless Propagation Letters*, Vol. 18, No. 12, pp. 2726-2730. DOI: 10.1109/LAWP.2019.2950312.

Tribak A., Mediavilla A., Cano J. L., Boussouis M. and Cepero K. Ultra-broadband low axial ratio corrugated quad-ridge polarizer, *European Microwave Conference*, pp. 73-76. DOI: 10.23919/EUMC.2009.5295927.

Mediavilla A., Cano J.L. and Cepero K. Quasi-octave bandwidth phase matched K/Ka antenna feed subsystem for dual RHCP/LHCP polarization, *42nd European Microwave Conference*, 29-31 Oct. 2012, Amsterdam,Netherlands, pp. 1099-1102. DOI: 10.23919/EUMC.2012.6459338.

Eleftheriades G.V., Omar A.S., Katehi L.P.B. and Rebeiz G.M. (1994) Some important properties of waveguide junction generalized scattering matrices in the context of the mode matching technique, *IEEE Transactions on Microwave Theory and Techniques*, Vol. 42, No.10., pp. 1896–1903. DOI: 10.1109/22.320771.

Rong Yu. and Zaki K.A. (2000) Characteristics of generalized rectangular and circular ridge waveguides, *IEEE Trans. Microwave Theory Tech.*, Vol. 48, No 2, pp. 258–265. DOI: 10.1109/22.821772.

Yu S. Y. and Bornemann J. (2009) Classical eigenvalue mode-spectrum analysis of multiple-ridged rectangular and circular waveguides for the design of narrowband waveguide components, *International Journal of Numerical Modelling*, Vol. 22, pp. 395–410. DOI: 10.1002/JNM.716.

Piltyay S.I. and F.F. Dubrovka (2013) Eigenmodes analysis of sectoral coaxial ridged waveguides by transverse field-matching technique. Part 1. Theory, *Visnyk NTUU KPI Seriia – Radioteknika Radioaparatobuduvannia*, Vol. 54., pp. 13-23. DOI: 10.20535/RADAP.2013.54.13-23.

Dubrovka F.F. and S.I. Piltyay (2013) Eigenmodes analysis of sectoral coaxial ridged waveguides by transverse field-matching technique. Part 2. Results, *Visnyk NTUU KPI Seriia – Radioteknika Radioaparatobuduvannia*, Vol. 55., pp. 13-23. DOI: 10.20535/RADAP.2013.55.13-23.

Sun W. and Balanis C.A. (1993) MFIE analysis and design of ridged waveguides, *IEEE Trans. Microwave Theory Tech.*, Vol. 41, No. 11, pp. 1965–1971. DOI: 10.1109/22.273423.

Sun W. and Balanis C.A. (1994) Analysis and design of quadruple-ridged waveguides, *IEEE Trans. Microwave Theory Tech.*, Vol. 42, No. 12, pp. 2201–2207. DOI: 10.1109/22.339743.

Serebryannikov A. E., Vasylchenko O. E., Schunemann K. (2004) Fast coupled-integral-equations-based analysis of azimuthally corrugated cavities, *IEEE Microwave Wireless Comp. Lett.*, Vol. 14, No. 5, pp. 240–242. DOI: 10.1109/LMWC.2004.827833.

Amari S., Catreux S., Vahldieck R. and Bornemann J. (1998) Analysis of ridged circular waveguides by the coupled-integral-equations technique, *IEEE Trans. Microwave Theory Tech.*, Vol. 46, No. 5., pp. 479–493. DOI: 10.1109/22.668645.

Piltyay S.I. (2012) Numerically effective basis functions in integral equation technique for sectoral coaxial ridged waveguides, *14-th International Conference on Mathematical Methods in Electromagnetic Theory*, 28-30 Aug. 2012, Kyiv, Ukraine, pp. 492–495. DOI: 10.1109/MMET.2012.6331195.

Zakharchenko О.S., Martynyk S.Ye. and P.Ya. Stepanenko (2018) Generalized mathematical model of thin asymmetric inductive diaphragm in rectangular waveguide [Uzahalnena matematychna model tonkoi nesemetrychnoi induktyvnoi diafrahmy u priamokutnomu khvylevodi], *Visnyk NTUU KPI Seriia – Radioteknika Radioaparatobuduvannia*, Vol. 72., pp. 13-22. (in Ukrainian). DOI: 10.20535/RADAP.2018.72.13-22.

Amari S., Bornemann J., Vahldieck R. (1996) Application of a coupled-integral-equations technique to ridged waveguides, *IEEE Trans. Microwave Theory Tech*., Vol. 44, No. 12, pp. 2256–2264. DOI: 10.1109/22.556454.

Dubrovka F.F. and Kupria O.M. (1982) Synthesis of microwave phase shifters based on reactive elements in a waveguide [Sintez fazovrashchatelei SVCh na osnove reaktivnykh elementov v volnovode], *Radio Electronics*, Vol. 25, No. 8, pp. 32–36. (in Russian). DOI: 10.20535/S00213470198208007X.

Leviatan Y., Li P.G., Adams A.T. and Perini J. (1983) Single-post inductive obstacle in rectangular waveguide, *IEEE Transactions on Microwave Theory and Techniques*, Vol. 31, No.10, pp. 806–812. DOI: 10.1109/TMTT.1983.1131610.

Zheng S.Y., Chan W.S. and Man K.F. (2010) Broadband phase shifter using loaded transmission line, *IEEE Microwave and Wireless Components Letters*, Vol. 20, No.9, pp. 498–500. DOI: 10.1109/LMWC.2010.2050868.

Tascone R., Savi P., Trinchenko D. and Orta R. (2000) Scattering matrix approach for the design of microwave filter, *IEEE Transactions on Microwave Theory and Technique*, Vol. 48, No.3., pp. 423–430. DOI: 10.1109/22.826842.

Amari S. (2000) Synthesis of cross-coupled resonator filters using an analytical gradient-based optimization technique, *IEEE Transactions on Microwave Theory and Techniques*, Vol. 48, no. 9, pp. 1559–1564. DOI: 10.1109/22.869008.

Naydenko V., Piltyay S. (2008) Evolution of radiopulses radiated by Hertz’s dipole in vacuum, *XII IEEE International Conference on Mathematical in Electromagnetic Theory*, 1-2 July 2008, Odesa, Ukraine, pp. 294–297. DOI: 10.1109/MMET.2008.4580972.

Tikhov Y. (2016) Comparison of two kinds of Ka-band circular polarisers for use in a gyro-travelling wave amplifier, *IET Microwaves Antennas and Propagation*, Vol. 10, no. 2., pp. 147-151. DOI: 10.1049/IET-MAP.2015.0292.

Nikolic N., Weily, A. Kekic I., Smith S.L. and Smart K.W. (2018) A septum polarizer with integrated square to circular tapered waveguide transition, *IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting*, 8-13 July 2018, Boston, pp. 725-726. DOI: 10.1109/APUSNCURSINRSM.2018.8608909.

Piltyay S.I. (2014) Enhanced C-band coaxial ortomode transducer,*Visnyk NTUU KPI Seriia – Radioteknika Radioaparatobuduvannia*, Vol. 57, pp. 35–42. DOI: 10.20535/RADAP.2014.57.35-42.

Jacobs O. B., Odendaal J.W. and . Joubert J. (2011) Elliptically shaped quad-ridge horn antennas as feed for a reflector, *IEEE Antennas Wireless Propagat. Lett.*, Vol. 10, pp. 756–759. DOI: 10.1109/LAWP.2011.2163050.

Polemi A., Maci S. and Kildal P.-S. (2011) Dispersion characteristics of a metamaterial-based parallel-plate ridge gap waveguide realized by bed of nails, *IEEE Trans. Antennas Propagat.*, Vol. 59, No. 3, pp. 904–913. DOI: 10.1109/TAP.2010.2103006.

Dubrovka F.F. and Piltyay S.I. (2013) A novel wideband coaxial polarizer, *IX IEEE International Conference on Antenna Theory and Techniques*, 16-20 Sept. 2013, Odessa, Ukraine, pp. 473-474. DOI: 10.1109/ICATT.2013.6650816.

Piltyay S.I. (2014) Enhanced C-band coaxial ortomode transducer, Visnyk NTUU KPI Seriia – Radioteknika Radioaparatobuduvannia, *IX IEEE International Conference on Antenna Theory and Techniques*, 24-24 May 2017, Kyiv, Ukraine, pp. 284-287. DOI: 10.1109/ICATT.2017.7972644.

Agnihotri I. and Sharma, S.K. (2019) Design of a compact 3D metal printed Ka-band waveguide polarizer, *IEEE Antennas and Wireless Propagation Letters*, Vol. 18, no. 12, pp. 2726-2730. DOI: 10.1109/LAWP.2019.2950312.

Dubrovka F.F., Piltyay S.I., Dubrovka R.R., Lytvyn M.M. and Lytvyn S.M. Optimum septum polarizer design for various fractional bandwidths, *Radioelectron. Commun. Syst.*, Vol. 63, No. 1, pp. 15–23. DOI: 10.3103/S0735272720010021.

Deutschmann B. and Jacob A.F. (2020) Broadband septum polarizer with triangular common port, *IEEE Transactions on Microwave Theory and Techniques*, Vol. 68, No. 2, pp. 693-700. DOI: 10.1109/TMTT.2019.2951138.

Mishra G., Sharma S.K. and Chieh J.-C. (2019) A circular polarized feed horn with inbuilt polarizer for offset reflector antenna for W-band CubeSat applications, *IEEE Transactions on Antennas and Propagation*, Vol. 67, No. 3, pp. 1904-1909. DOI: 10.1109/TAP.2018.2886704.

Piltyay S.I. (2014) Enhanced C-band coaxial ortomode transducer, *Visnyk NTUU KPI Seriia – Radioteknika Radioaparatobuduvannia*, Vol. 58, pp. 27–34. DOI: 10.20535/RADAP.2014.58.27-34.

Piltyay S.I., Bulashenko A.V. and Demchenko I.V. (2020) Waveguide iris polarizers for Ku-band satellite antenna feeds,*Journal of Nano- and Electronic Physics*, Vol. 12, No. 5, pp. 05024-1-05024-5. DOI: 10.21272/jnep.12(5).05024.

Piltyay S.I., Sushko O.Yu., Bulashenko A.V. and Demchenko I.V. (2020) Compact Ku-band iris polarizers for satellite telecommunication systems, *Telecommunications and Radio Engineering*, Vol. 79, No. 19, pp. 1673-1690. DOI: 10.1615/TelecomRadEng.v79i19.10.

Luo N., Yu X., Mishra G. and Sharma S.K. (2020) A millimeter-wave (V-band) dual-circular-polarized horn antenna based on an inbuilt monogroove polarizer, *IEEE Antennas and Wireless Propagation Letters*, Vol. 19, No. 11, pp. 1933–1937. DOI:10.1109/LAWP.2020.3015745.

Dubrovka F., Piltyay S., Sushko O., Dubrovka R., Lytvyn M. and Lytvyn S. (2020) Compact X-band stepped-thickness septum polarizer, *IEEE Ukrainian Microwave Week*, 21-25 Sep. 2020, Kharkiv, Ukraine, pp. 135–138. DOI: 10.1109/UkrMW49653.2020.9252583.

Dubrovka F., Martunyuk S., Dubrovka R., Lytvyn M., Lytvyn S., Ovsianyk Yu., Piltyay S., Sushko O., Zakharchenko O. (2020) Circularly polarised X-band H11- and H21-modes antenna feed for monopulse autotracking ground station, *IEEE Ukrainian Microwave Week*, 21-25 Sep. 2020, Kharkiv, Ukraine, pp. 196–202. DOI: 10.1109/UkrMW49653.2020.9252600.

Kirilenko A.A., Steshenko S.O., Derkach V.N. and Ostryzhnyi Y.M. (2019) A tunable compact polarizer in a circular waveguide, *IEEE Transactions on Microwave Theory and Techniques*, Vol. 67, No. 2, pp. 592–596. DOI: 10.1109/TMTT.2018.2881089.

Kirilenko A., Steshenko S. and Ostryzhnyi Y. (2020) Topology of a planar-chiral iris as a factor in controlling the “optical activity” of a bilayer object, *IEEE Ukrainian Microwave Week*, 21-25 Sep. 2020, Kharkiv, Ukraine, pp. 135–138. DOI: 10.1109/UkrMW49653.2020.9252669.

Piltyay S.I., Bulashenko A.V. and Demchenko I.V. (2020) Compact polarizers for satellite information systems, IEEE International Conference on Problems of Infocommunications. Science and Technology (PIC S&T), 8-10 Oct. 2020, Kharkiv, Ukraine,pp. 350–355.

Al-Amoodi K., Mirzavand R., Honari M.M., Melezer J., Elliott D.G. and Mousavi P. (2020) A compact substrate integrated waveguide notched-septum polarizer for 5G mobile devices, *IEEE Antennas and Wireless Propagation Letters*, Vol. 19, No. 12, pp. 2517–2521. DOI: 10.1109/LAWP.2020.3038404.

Bulashenko A.V., Piltay S.I. and Demchenko I.V. (2020) Analytical technique for iris polarizers development, IEEE International Conference on Problems of Infocommunications. Science and Technology (PIC S&T), 8-10 Oct. 2020, Kharkiv, Ukraine, pp. 464–469.

Bulashenko A.V., Piltay S.I. and Demchenko I.V. (2020) Optimization of a polarizer based on a square waveguide with irises [Optymizacija poljaryzatora na osnovi kvadratnogo hvylevodu z diafragmamy], *Science-based Technologies*, vol. 47, no.3, pp. 287–297. (in Ukrainian). DOI:10.18372/2310-5461.47.14878.

Kolmakova N., Perov A., Derkach V. and Kirilenko A. (2016) Polarization plane rotation by arbitrary angle using D4 symmetrical structures, *IEEE Transactions on Microwave Theory and Techniques*, Vol. 64, No. 2, pp. 429–435. DOI: 10.1109/TMTT.2016.2509966.

Сhong W.S., Gan S.X., Lai C.K., Chong W.Y., Choi D., Madden S. and Ahmad H. (2020) Configurable TE- and TM-pass grapheme oxide-coated waveguide polarizer, *IEEE Photonics Technology Letters*, Vol. 32, No. 11, pp. 627–630. DOI: 10.1109/LPT.2020.2988591.

Zafar H., Odeh M., Khilo A. and Dahlem M.S. (2020) Low-loss broadband silicon TM-pass polarizer based on periodically structured waveguides, *IEEE Photonics Technology Letters*, Vol. 32, No. 17, pp. 1029–1032. DOI: 10.1109/LPT.2020.3011056.

Gao S., Luo Q. and Zhu F. *Circularly polarized Antennas Theory and Design*. – John Wiley and Sons, Chichester, 2014, 322p.

Maas S.A. *Practical microwave circuits*. – Artech House, Norwood, 2014, 352p.

Collin R.E. *Foundations for microwave engineering*. – John Wiley and Sons, New Jersey, 2001, 945p.

Milligan T.A. *Modern Antenna Design*. – John Wiley and Sons, New Jersey, 2005, 945p.

Stutzman W.L. *Polarization in electromagnetic systems.*, Artech House, Norwood, 2018, 256p.

Hwang S. and Ahn B.-C. (2007) New design method for a dual band waveguide iris polarizer, *IEEE International symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications*, 16-17 Aug. 2007, Hangzhou, China, pp. 435–438. DOI: 10.1109/MAPE.2007.4393644.

## Downloads

## Published

## How to Cite

*Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia*, (83), pp. 17-28. doi: 10.20535/RADAP.2020.83.17-28.

## Issue

## Section

## License

Copyright (c) 2020 Андрій Васильович Булашенко

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with this journal agree to the following terms:

- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).