Synthesis Method of High Precision Servo-Systems
DOI:
https://doi.org/10.20535/RADAP.2021.87.30-38Keywords:
servo-systems, high precision, transfer function, synthesis method, invariance, stability, radio engineering servo-systems, control device, object of control, loop, regulatorAbstract
The method for synthesis of servo-systems, equivalent to combined ones, in the conditions of the simultaneous presence of both immeasurable input setting action and external disturbances and noises is presented in this paper.
The paper offers the solution to the control problem within the framework of two-loop systems, equivalent to combined systems (Fig. 2), in which the first block of the second loop carries out the operation of extracting X from an error signal ɛк according to expression (5), the transfer function of the second controller is given by expression (6), the third block performs inversion of a transfer function (TF) WОy (p).
The characteristic polynomial of a two-loop automatic control system (ACS) has the form (7), which excludes the effect of the second loop on the stability of the first one. The polynomial of the numerator of the error transfer function must have the difference of the polynomials, which leads to the achievement of invariance. In accordance with these requirements, the invariance condition and the characteristic equation have the form (16) and (17).
The double-loop servo-system which has an error transfer function with the form (20) is equivalent to a combined one, since it provides: the invariance of the error with respect to the setting action without its direct measurement; stability of the first circuit with a stable second circuit. With this construction of the ACS, the equivalence to the combined systems, in contrast to the method of differential constraints, is achieved by two control loops instead of three ones.
The double-loop ACS is synthesized that is equivalent to a combined one, which at the same time implements the requirement — an increase in ACS astatism by one unit.
It is advisable to apply the proposed method to the construction of servo-systems (especially radio engineering, where the input useful effect is not measurable), as well as in control systems of aircraft for various purposes.
References
Перечень ссылок
Гайдук А. Р. К условиям существования абсолютно инвариантных к неизмеряемым воздействиям систем / А. Р. Гайдук// Автомат. и телемех.– 2010. – №8 – С. 3–12.
Жуков В. П. О существовании инвариантных простых контуров в инвариантных множествах нелинейных динамических систем второго порядка / В. П. Жуков // Автомат. и телемех. – 2002. – № 3 – С. 36–49.
Зайцев Г. Ф. Синтез дискретных систем на основе условий инвариантности по каналам оценивания и управления / Г. Ф. Зайцев, Ю. А. Пушкарев //Теория инвариантности, теория чувствительности и их применение. Тез. док. VII Всесоюзное совещ. – Москва: Институт проблем управления, 1987. – 162 c.
Зайцев Г. Ф. Комбинированные следящие системы / Г. Ф. Зайцев – Київ: Техника, 1978. – 262 с.
Методы современной теории автоматического управления //Под общей ред. К. А. Пупкова. – Москва: МГУ им. Н. Э. Баумана, 2000. – 747 с.
Петров Б. Н. Теория автоматического управления: Избранные труды. Т.1. / Б. Н. Петров. – Москва: Наука, 1983. – 429 с.
Петров Б. Н. Управление авиационными и космическими аппаратами: Избранные труды. Т. 2. / Б. Н. Петров. – Москва: Наука, 1983. – 328 с.
Петров Б. Н. Принцип инвариантности в измерительной технике / Б. Н. Петров, В. А. Викторов, Б. В. Лункин. – Москва: Наука, 1976. – 239 с.
Пушкарев Ю. А. Анализ и синтез дискретных систем оценивания / Ю. А. Пушкарев. – Москва: МО СССР, 1989. – 350 с.
Пушкарев Ю. А. Новые эффективные цифровые фильтры второго и третьего порядка / Ю. А. Пушкарев, В. Б. Ревенко // Изв. вузов. Радиоэлектроника. – 1994. – Т. 37. № 4.– С. 54–61.
Пушкарев Ю. А. Новый структурный метод синтеза эффективных цифровых фильтров обработки информации для автоматических следящих систем/ Ю. А. Пушкарев, В. Б. Ревенко // Институт кибернетики УССР им. акад. В. М. Глушкова. Проблемы управления и информатики. – 1995. – № 1. – С. 138–148.
Пушкарев Ю. А. Метод конструирования следящей системы с цифровым фильтром внутри контура слежения и повышенной точностью управления / Ю. А. Пушкарев, В. Б. Ревенко // Изв. вузов. Радиоэлектроника. – 2005. – Т.48, № 10. – С. 29–37.
Синтез регуляторов и теория оптимизации систем автоматического управления // Под общей редакцией К. А. Пупкова. – Москва: МГТУ им. Н. Э. Баумана. – 2000. – 735 с.
Солнечный Э. М. Инвариантность и астатизм в системах без измерения возмущения / Э. М. Солнечный // Автомат. и телемех. – 2008. – №12. – С. 76–85.
Уткин В. А. Инвариантность и автономность в системах с разделяемыми движениями / В. А. Уткин // Автомат. и телемех. – 2001. – Вып. 11. – С. 73–94.
Теория управления. Терминология. Вып. 107. – Москва: Наука, 1988. – 56 с.
Davison E. J. The output control of linear time-invariant systems with unmesurable arbitrary disturbances // IEEE. Trans. – 1972. – Vol. 17, No. 5. – pp. 621–630. doi:10.1109/TAC.1972.1100084.
Boyd S. Linear Matrix Inequalities in System and Control Theory / S. Boyd, L. Ghaoui, E. Feron, V. Balakrishnan. – Philadelphia: STAM, 1994. – 193 p.
Chen Z. Research on High-Precision Attitude Control of Joint Actuator of Three-Axis Air-Bearing Test Bed / Chen Z., Luo Z., Wu Y., Xue W., Li W. // Journal of Control Science and Engineering. – 2021 . – Article ID 5582541. doi:10.1155/2021/5582541.
Wang Y. Neural network-based adaptive tracking control for switched nonlinear systems with prescribed performance: An average dwell time switching approach / Y. Wang, B. Niu, H. Wang et al. // Neurocomputing. – 2021 . – Vol. 435. – pp. 295–306. doi.org/10.1016/j.neucom.2020.10.023.
Ma L. Small-Gain Technique-Based Adaptive Neural Output-Feedback Faulttolerant Control of Switched Nonlinear Systems with Unmodeled Dynamics / L. Ma, N. Xu, X. Zhao, G. Zong, and X. Huo // IEEE Transactions on Systems, Man, and Cybernetics: Systems. – 2020. – Vol. 51. – pp. 7051–7062. doi.org: 10.1109/TSMC.2020.2964822.
Xiong J. Nonfragile fault-tolerant control of suspension systems subject to input quantization and actuator fault / J. Xiong, X. Chang, J. H. Park et al. // International Journal of Robust and Nonlinear Control. – 2020. – Vol. 30. – pp. 6720–6743. doi.org/10.1002/rnc.5135.
Yuan W. Adaptive Backstepping Sliding Mode Control of the Hybrid Conveying Mechanism with Mismatched Disturbances via Nonlinear Disturbance Observers / W. Yuan, G. Gao, and J. Li // Journal of Control Science and Engineering. – 2020. – Vol. 2020, 13 pages, Article ID 7376503. doi.org/10.1155/2020/7376503.
Jin X. Adaptive fault-tolerant consensus for a class of leader-following systems using neural network learningstrategy / X. Jin, X. Zhao, J. Yu, X. Wu, J. Chi // Neural Netw. – 2020. – Vol. 121. – pp. 474–483. doi.org/10.1016/j.neunet.2019.09.028.
Yao X. Disturbance-Observer-Based Fault Tolerant Control of High-Speed Trains: a Markovian Jump System Model Approach / Yao X., Wu L., Guo L. // IEEE Trans Syst Man Cybernet Syst. – 2020. – Vol. 50(4). – pp. 1476–1485. doi.org/10.1109/TSMC.2018.2866618.
Mechali Omar. Observer-based fixed-time continuous nonsingular terminal sliding mode control of quadrotor aircraft under uncertainties and disturbances for robust trajectory tracking: Theory and experiment / Omar Mechali, Limei Xu, Ya Huang, Mengji Shi, Xiaomei Xie // Control Engineering Practice. – 2021. – Vol. 111, Article 104806. doi.org/10.1016/j.conengprac.2021.104806.
Sharma Manmohan. Control of a quadrotor with network induced time delay / Manmohan Sharma, Indrani Kar // ISA Transactions. – 2021. – Vol. 111. – pp. 132–143. doi.org/10.1016/j.isatra.2020.11.008.
Benjamin Kuo C. Automatic Control Systems / Kuo C. Benjamin. – Technology and Engineering, 1995. – 928 p.
C. Dorf Richard. Modern Control Systems, Global Edition. 13th Edition / Richard C. Dorf, Robert H. Bishop. – Pearson (Intl), 2019. – 1032 p.
Ageev S. A. An Adaptive Method for Assessing Traffic Characteristics in High-Speed Multiservice Communication Networks Based on a Fuzzy Control Procedure / S. A. Ageev, A. A. Privalov, A. A. Butsanets// Intellectual control systems. – 2021. – Vol. 82. – pp. 1222 – 1232. doi.org/10.1134/S0005117921070067.
Bazhenov S. G. Stability Analysis of an Airplane with MIMO Control System Based on Frequency Methods / S. G. Bazhenov, A. N. Kozyaichev, V. S. Korolev// Control sciences. – 2021. – Vol. 82. – pp. 1271–1280. doi.org/10.1134/S0005117921070109.
Alexandrov V. A. Optimization of the Altitude and Speed Profile of the Aircraft Cruise with Fixed Arrival Time / V. A. Alexandrov, E. Yu. Zybin, M. V. Khlebnikov // Automation and Remote Control. – 2021. – Vol. 82. – pp. 1169–1182. doi.org/10.1134/S0005117921070031.
N. van Hien. An Object-Oriented Systems Engineering Point of View to Develop Controllers of Quadrotor Unmanned Aerial Vehicles / N. V. Hien, V.-T. Truong, and N.-T. Bui // International Journal of Aerospace Engineering. – 2020. – Vol. 2020. Article ID 8862864. – 17 p. doi.org/10.1155/2020/8862864.
References
Gaiduk A. R. (2010). To the conditions for the existence of systems absolutely invariant to unmeasured influences. Automation and telemechanics, Iss. 8, рр. 3–12. [in Russian].
Zhukov V. P. (2002). On the existence of invariant simple contours in invariant sets of second-order nonlinear dynamical systems. Automation and telemechanics, Iss. 3, рр. 36–49. [in Russian].
Zaitsev G. F. and Pushkarev Yu. A. (1987). Sintez diskretnykh sistem na osnove uslovii invariantnosti po kanalam otsenivaniya i upravleniya. Teoriya invariantnosti, teoriya chuvstvitel'nosti i ikh primenenie. Tez. dok. VII Vsesoyuznoe soveshch. [Synthesis of discrete systems based on invariance conditions for estimation and control channels. The theory of invariance, the theory of sensitivity and their application. Abstracts. doc. VII All-Union conference]. Moskva : Institut problem upravleniya, 162 p. [in Russian].
Zaitsev G. F. (1978). Kombinirovannye sledyashchie sistemy [Combined tracking systems]. Kiiv : Equipment Publ., 262 p. [in Russian].
Pupkov K. A. (2000). Metody sovremennoi teorii avtomaticheskogo upravleniya [Methods of modern theory of automatic control]. Moskva: State University N. E. Bauman, 747 p. [in Russian].
Petrov B. N. (1983). Teoriya avtomaticheskogo upravleniya: Izbrannye trudy. T.1. [Automatic control theory: Selected works. Vol. 1]. Moskva: Nauka, 429 p. [in Russian].
Petrov B. N. (1983). Upravlenie aviatsionnymi i kosmicheskimi apparatami: Izbrannye trudy. T. 1 [Aircraft and Spacecraft Management: Selected Works. Vol. 1]. Moskva: Nauka, 328 p. [in Russian].
Petrov B. N., Viktorov V. A. and Lunkin B. V. (1976). Printsip invariantnosti v izmeritel'noi tekhnike [The principle of invariance in measuring technology]. Moskva: Nauka, 239 p. [in Russian].
Pushkarev Yu. A. (1989). Analiz i sintez diskretnykh sistem otsenivaniya [Analysis and synthesis of discrete grading systems]. MO SSSR, 350 p. [in Russian].
Pushkarev Yu. A. and Revenko V. B. (1994). New efficient digital filters of the second and third order. Izv. universities. Radioelectronics, Vol. 37, Iss. 4. [in Russian].
Pushkarev Yu. A. and Revenko V. B. (1995). A new structural method for the synthesis of effective digital filters for information processing for automatic tracking systems. Institute of Cybernetics of the Ukrainian SSR named after acad. V. M. Glushkova. Problems of management and informatics, Iss. 1, pp. 138–148. [in Russian].
Pushkarev Yu. A. and Revenko V. B. (2005). Tracking system design method with a digital filter inside the tracking loop and increased control accuracy. Izv. universities. Radioelectronics, Vol. 48, Iss. 10, pp. 29–37. [in Russian].
Punkova K. A. (2000). Sintez regulyatorov i teoriya optimizatsii sistem avtomaticheskogo upravleniya [Synthesis of regulators and the theory of optimization of automatic control systems]. Moskva: State University N. E. Bauman, 735 p. [in Russian].
Solnechnyi E. M. (2008). Invariance and astitism in systems without disturbance measurement. Automation and telemechanics, Iss. 12, pp. 76–85. [in Russian].
Utkin V. A. (2001). Invariance and autonomy in systems with shared motions. Automation and telemechanics, Iss. 11, pp. 73–94. [in Russian].
Teoriya upravleniya. Terminologiya. [Control theory. Terminology]. (1988). Moskva: Nauka, Vol. 107, 56 p. [in Russian].
Davison E. J. (1972). The output control of linear time-invariant systems with unmesurable arbitrary disturbances. IEEE Transactions on Automatic Control, Vol. 17, Iss. 5, pp. 621–630. doi:10.1109/TAC.1972.1100084.
Boyd S., Ghaoui L., Feron E. and Balakrishnan V. (1994). Linear Matrix Inequalities in System and Control Theory. Philadelphia: STAM, 193 p.
Chen Z., Luo Z., Wu Y., Xue W., Li W. (2021). Research on High-Precision Attitude Control of Joint Actuator of Three-Axis Air-Bearing Test Bed. Journal of Control Science and Engineering, Vol. 2021, Article ID 5582541. doi:10.1155/2021/5582541.
Wang Y., Niu B., Wang H. et al. (2021). Neural network-based adaptive tracking control for switched nonlinear systems with prescribed performance: An average dwell time switching approach. Neurocomputing, Vol. 435, pp. 295–306. doi:10.1016/j.neucom.2020.10.023.
Ma L., Xu N., Zhao X., Zong G., and Huo X. (2020). Small-Gain Technique-Based Adaptive Neural Output-Feedback Faulttolerant Control of Switched Nonlinear Systems with Unmodeled Dynamics. IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 51, Iss. 11, pp. 7051-7062. doi:10.1109/TSMC.2020.2964822.
Xiong J., Chang X.-H., Park J. H., Li Z.-M. (2020). Nonfragile fault-tolerant control of suspension systems subject to input quantization and actuator fault. International Journal of Robust and Nonlinear Control, Vol. 30, Iss. 16, pp. 6720–6743. doi:10.1002/rnc.5135.
Yuan W., Gao G., and Li J. (2020). Adaptive Backstepping Sliding Mode Control of the Hybrid Conveying Mechanism with Mismatched Disturbances via Nonlinear Disturbance Observers. Journal of Control Science and Engineering, Vol. 2020, 13 p., Article ID 7376503. doi:10.1155/2020/7376503.
Jin X., Zhao X., Yu J., Wu X., Chi J. (2020). Adaptive fault-tolerant consensus for a class of leader-following systems using neural network learning strategy. Neural Networks, Vol. 121, pp. 474–483. doi:10.1016/j.neunet.2019.09.028.
Yao X., Wu L., Guo L. (2020). Disturbance-Observer-Based Fault Tolerant Control of High-Speed Trains: a Markovian Jump System Model Approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 50, no. 4, pp. 1476–1485. doi: 10.1109/TSMC.2018.2866618.
Mechali Omar, Xu Limei, Huang Ya, Shi Mengji, Xie Xiaomei. (2021). Observer-based fixed-time continuous nonsingular terminal sliding mode control of quadrotor aircraft under uncertainties and disturbances for robust trajectory tracking: Theory and experiment. Control Engineering Practice, Vol. 111, 104806. doi:10.1016/j.conengprac.2021.104806.
Sharma Manmohan, Indrani Kar. (2021). Control of a quadrotor with network induced time delay. ISA Transactions, Vol. 111, pp.132–143. doi:10.1016/j.isatra.2020.11.008.
Kuo B. C. (1995). Automatic Control Systems, 7th edition. PHI LEARNING PVT LTD: Technology and Engineering, 928 p.
Dorf R. C., Bishop R. H. (2019). Modern Control Systems, Global Edition. 13th Edition. Pearson, 1032 p.
Ageev S. A., Privalov A. A., Karetnikov V. V., Butsanets A. A. (2021). An Adaptive Method for Assessing Traffic Characteristics in High-Speed Multiservice Communication Networks Based on a Fuzzy Control Procedure. Automation and Remote Control, Vol. 82, pp. 1222–1232. doi:10.1134/S0005117921070067.
Bazhenov S. G., Kozyaichev A. N., Korolev V. S. (2021). Stability Analysis of an Airplane with MIMO Control System Based on Frequency Methods. Automation and Remote Control, Vol. 82, pp. 1271–1280. doi:10.1134/S0005117921070109.
Alexandrov V. A., Zybin E. Yu., Khlebnikov M. V. (2021). Optimization of the Altitude and Speed Profile of the Aircraft Cruise with Fixed Arrival Time. Automation and Remote Control, Vol. 82, pp. 1169–1182. doi:10.1134/S0005117921070031.
N. V. Hien, V.-T. Truong and N.-T. Bui (2020). An Object-Oriented Systems Engineering Point of View to Develop Controllers of Quadrotor Unmanned Aerial Vehicles. International Journal of Aerospace Engineering, Vol. 2020, Article ID 8862864, 17 p. doi:10.1155/2020/8862864.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Наталія Каращук, Володимир Борисович
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).