Mutual Coupling Coefficients of Rotated Rectangular Dielectric Resonators in Open Space

Authors

DOI:

https://doi.org/10.20535/RADAP.2022.88.60-68

Keywords:

coupling coefficient, mutual coupling coefficient, rotation, rectangular dielectric resonator, open space

Abstract

The coefficients of mutual coupling of rectangular dielectric resonators in open space are calculated under the condition of their rotation relative to one of the axes of a given rectangular coordinate system. Analytical formulas for complex coupling coefficients are obtained. The expressions found give complete information about the frequencies and Q-factor of coupled oscillations of dielectric resonators. The dependences of the coupling coefficients on the angles of rotation and spatial coordinates of resonators in the case of excitation of the main magnetic types of natural oscillations in them are considered. The concept of pseudo-rotation of resonators is introduced. Cases are noted when the pseudo-rotation of the resonators does not lead to a change in the coupling coefficients. The dependences of the coupling coefficients for different types of resonator pseudo-rotations are investigated. New integral representations are derived for the mutual coupling coefficients of rectangular dielectric resonators provided that their axes rotate in open space. In particular cases of parallelism of the resonator axes of one of the coordinate axes, the analytical expressions found in the work coincide with those obtained earlier. For each case of rotation, approximate analytical formulas are found for the integral representations obtained in this work, expressed in terms of the spherical Hankel functions of the second kind. Comparison of calculations of coupling coefficients by integral formulas and approximate expressions is carried out. It is shown that the approximate expressions have acceptable accuracy for all the considered cases of rotations. The dependences of the coupling coefficients on the coordinates of the resonators are investigated. The regions are marked in which the found integral representations make it possible to correctly describe the coupling coefficients of rectangular resonators. In contrast to integral representations, approximate formulas are correct in the entire spatial region of resonator interaction. The results obtained make it possible to construct analytical models of antennas, multi-element arrays and devices of infrared and optical wavelength ranges, made with the use of rectangular dielectric resonators; significantly reduce computation timecompared to numerical methods and optimize complex multi-cavity structures of microwave and optical communication systems.

References

References

Da Y., Zhang Z., Chen X., Kishk A. A. (2021). Mutual Coupling Reduction With Dielectric Superstrate for Base Station Arrays. IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 5, pp. 843-847. doi: 10.1109/LAWP.2021.3065392.

Zhang Z., Yang Q., Gong M., Chen M., Long Z. (2019). Metasurface lens with Angular modulation for extended depth of focus imaging. Optics Letters, Vol. 45(3), pp. 611-614. DOI:10.1364/OL.382812.

Kupriianov A. S., Tuz V. R., Sherbinin A., Trubin A. A., Fesenko V. I. (2020). All-dielectric Vogel metasurface antennas with bidirectional radiation pattern. Journal of Optics, Vol. 22, Iss. 3, id. 035104. DOI: 10.1088/2040-8986/ab70f6.

Gao Z., Golla S., Sawant R., Osipov V., Briere G., et al. (2020). Revealing topological phase in Pancharatnam–Berry metasurfaces using mesoscopic electrodynamics. Nanophotonics, Vol. 9, Iss. 16, pp. 4711–4718. doi:10.1515/nanoph-2020-0365.

Terekhov P. D., Evlyukhin A. B., Karabchevsky A., Shalin A. S. (2020). Multipole analysis of periodic array of rotated silicon cubes. Journal of Physics: Conference Series, Vol. 1461, pp. 1-4.

Abujetas D. R., Barreda A., Moreno F., Sáenz J. J., Litman A., Geffrin J.-M., Sánchez-Gil J. A. (2019). Brewster quasi bound states in the continuum in all-dielectric metasurfaces from single magnetic-dipole resonance meta-atoms. Scientific Reports, Vol. 9, Article number: 16048. doi:10.1038/s41598-019-52223-4.

Neshev D., Aharonovich I. (2018). Optical metasurfaces: new generation building blocks for multi-functional optics. Light: Science & Applications, Vol. 7, Article number: 58. doi:10.1038/s41377-018-0058-1.

Gutruf P., Zou C., Withayachumnankul W., Bhaskaran M., Sriram S., Fumeaux C. (2016). Mechanically Tunable Dielectric Resonator Metasurfaces at Visible Frequencies. ACS Nano, Vol. 10, Iss. 1, pp. 133–141. DOI: 10.1021/acsnano.5b05954.

Fan Q., Wang D., Huo P., Zhang Z., Liang Y., Xu T. (2017). Autofocusing Airy beams generated by all dielectric metasurface for visible light. Optics Express, Vol. 25, No. 8, pp. 9285-9294. doi: 10.1364/OE.25.009285.

Lin J.-H., Shen W.-H., Shi Z.-D., Zhong S.-S. (2017). Circularly Polarized Dielectric Resonator Antenna Arrays with Fractal Cross-Slot-Coupled DRA Elements. Hindawi International Journal of Antennas and Propagation, Vol. 2017, Article ID 8160768, 11 p. doi:10.1155/2017/8160768.

Li L., Wang J., Wang J., Du H., Huang H., at el. (2015). All-dielectric metamaterial frequency selective surfaces based on high-permittivity ceramic resonators. Applied Physics Letters, Vol. 106, 212904. doi: 10.1063/1.4921712.

Zainud-Deen S. H., Gaber S. M., Malhat H. A., Awadalla K. H. (2012). Multilayer dielectric resonator antenna transmit array for near-field and far-field fixed RFID reader. 2012 29th National Radio Science Conference (NRSC), pp. 81-88. doi: 10.1109/NRSC.2012.6208510.

Kumari R., Behera S. K. (2013). Nine-element frequency independent dielectric resonator array for X-band applications. Microwave and Optical Technology Letters, Vol. 55, No. 2, pp. 400-403. doi: 10.1002/mop.27337.

Petosa A., Thirakoune S. (2011). Rectangular Dielectric Resonator Antennas With Enhanced Gain. IEEE Transactions on Antennas and Propagation, Vol. 59, No. 4, pp. 1385-1389. doi: 10.1109/TAP.2011.2109690.

Kim J., Gopinath A. (2007). Application of Cubic High Dielectric Resonator Metamaterial to Antennas. 2007 IEEE Antennas and Propagation International Symposium, pp. 2349 - 2352. DOI: 10.1109/aps.2007.4396003.

Iveland T. D. (1971). Dielectric Resonator Filters for Application in Microwave Integrated Circuites. IEEE Transactions on Microwave Theory and Techniques, Vol. 19, No. 7, pp. 643-652. doi: 10.1109/TMTT.1971.1127594.

Trubin A. A., Kupriianov A. S., Fesenko V. I., Tuz V. R. (2020). Coupling coefficients for dielectric cuboids located in free space. Applied Optics, Vol. 59, No. 23/10, pp. 6918-6924. DOI: 10.1364/AO.399930.

Trubin A. A. (2016). Lattices of Dielectric Resonators. Springer International Publishing Switzerland. Series in Advanced Microelectronics, Vol. 53, 159 p.

Downloads

Published

2022-06-30

How to Cite

Trubin, A. A. (2022) “Mutual Coupling Coefficients of Rotated Rectangular Dielectric Resonators in Open Space: ”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, (88), pp. 60-68. doi: 10.20535/RADAP.2022.88.60-68.

Issue

Section

Electrodynamics. Microwave devices. Antennas

Most read articles by the same author(s)

1 2 3 > >>