Optimization Scattering Parameters of Optical Filters With Whispering Gallery Mode Resonators for Interleaver Building

Authors

DOI:

https://doi.org/10.20535/RADAP.2025.99.49-55

Keywords:

scattering, dielectric resonator, scattering matrix, notch filter, laterally coupled add/drop filter, parallel-coupled add/drop filter, twisted double-channel SCISSOR, interleaver

Abstract

The frequency dependences of the scattering matrices of known types of optical filters, built on coupled Dielectric Resonators (DR) with whispering gallery oscillations, located in one or more transmission lines taking into account several frequency bands, are considered. New electromagnetic models of notch and add/drop filters of various types, which consist of one and two optical resonators with degenerate types of natural oscillations, have been built. The found solutions are used for calculations and analysis of frequency dependences of filter scattering matrices in several excitation bands of the structure's of resonators. Examples of the calculation of frequency dependences of scattering matrices for the most common structures are given, which can be found as practical relationships when building interleavers. The frequency dispersion characteristics of several types of filters consisting of one and two dielectric resonators were calculated. The frequency dependences of the scattering matrices of two most common types of filters made on the basis of coupled DRs located in parallel between two optical transmission lines are investigated: laterally coupled add/drop filters; parallel-coupled add/drop filters; twisted double-channel SCISSORS. The possibilities of the proposed method are demonstrated on examples of calculation of the dispersion matrices of add/drop filters, taking into account several frequency bands, which can be used to build interleavers. The effect of oscillations of resonators neighboring in frequency on the characteristics of filters was analyzed. Constructed electrodynamics’ filter models are the basis for calculating and optimizing the characteristics of a wide class of elements of the newest ultra-high-speed optical communication systems.

References

Reference

1. Alboon S. A., Barakat J. M. H., Karar A. S. (2024). Angle-tuned optical interleaver based on Fabry–Perot cavities with reconfigurable angle range. Results in Optics, Vol. 16, 100722, doi:10.1016/j.rio.2024.100722.

2. Arrieta D. R. et al. (2023). Proof-of-Concept Real-Time Implementation of Interleavers for Optical Satellite Links. Journal of Lightwave Technology, Vol. 41, No. 12, pp. 3932-3942, doi:10.1109/JLT.2023.3270769, hal-04603928.

3. Li Q., Zhu H., Zhang H., Hu H. (2023). Electro-optical tunable interleaver in hybrid silicon and lithium niobate thin films. Optics Express, Vol. 31, No. 15, pp. 24203–24212, doi:10.1364/OE.494532.

4. Yamazaki T., Arizono T., Kobayashi T., Ikuta R., Yamamoto T. (2023). Linear Optical Quantum Computation with Frequency-Comb Qubits and Passive Devices. Physical Review Letters, Vol. 130, 200602, pp. 200602-1 - 200602-6, doi:10.1103/PhysRevLett.130.200602.

5. Zhou N., Zheng S., Long Y., Ruan Z., Shen L., Wangi J. (2018). Reconfigurable and tunable compact comb filter and (de)interleaver on silicon platform. Optics Express, Vol. 26, No. 4, pp. 4358–4369, doi:10.1364/OE.26.004358.

6. Gevorgyan H., Qubaisi K. A., Dahlem M. S., Khilo A. (2016). Silicon photonic time-wavelength pulse interleaver for photonic analog-to-digital converters. Optics Express, Vol. 24, No. 12, pp. 13489–13499. doi:10.1364/OE.24.013489.

7. Jiang X., Wu J., Yang Y., Pan T., Mao J. et al. (2016). Compact Silicon Photonic Interleaver Using Loop-Mirror-Based Michelson-Gires-Tournois Interferometer. 2016 Optical Fiber Communications Conference and Exhibition (OFC), OSA, paper Tu2F.5, doi:10.1364/OFC.2016.Tu2F.5P.

8. Chen C., Niu X., Han C., Shi Z., Wang X. et al. (2014). Reconfigurable optical interleaver modules with tunable wavelength transfer matrix function using polymer photonics lightwave circuits. Optics Express, Vol. 22, No. 17, pp. 19895–19911, doi:10.1364/OE.22.019895.

9. Luo L.-W., Ibrahim S., Nitkowski A., Ding Z., Poitras C. B. et al. (2010). High bandwidth on-chip silicon photonic interleaver. Optics Express, Vol. 18, No. 22, pp. 23079–23087, doi:10.1364/OE.18.023079.

10. Dingel B. B. (2003). Recent Development of Novel Optical Interleaver: Performance and Potential. Proceedings of SPIE, Vol. 5246, pp. 570–581, doi:10.1117/12.513726.

11. Zhuang L., Beeker W., Leinse A., Heideman R., van Dijk P., Roeloffzen C. (2013). Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure. Optics Express, Vol. 21, No. 3, pp. 3114–3124, doi:10.1364/OE.21.003114.

12. Alboon S. A., Abu-Abed A. S., Lindquist R. G., Al-Zoubi H. R. (2010). Novel Liquid Crystal Tunable Flat-Top Optical Interleaver. Progress In Electromagnetics Research B, Vol. 19, pp. 263–283. DOI:10.2528/PIERB09121504.

13. Song J., Zhao H., Fang Q., Tao S. H., Liow T. Y. et al. (2008). Effective thermo-optical enhanced cross-ring resonator MZI interleavers on SOI. Optics Express, Vol. 16, No. 26, pp. 21476–21482, doi:10.1364/OE.16.021476.

14. Song J. F., Fang Q., Tao S. H., Yu M. B., Lo G. Q. and Kwong D. L. (2008). Proposed silicon wire interleaver structure. Optics Express, Vol. 16, No. 11, pp. 7849–7859, doi:10.1364/OE.16.007849.

15. Song J. F., Tao S. H., Fang Q., Liow T. Y., Yu M. B. et al. (2008). Thermo-Optical Enhanced Silicon Wire Interleavers. IEEE Photonics Technology Letters, Vol. 20, No. 24, pp. 2165–2167, DOI:10.1109/LPT.2008.2007572.

16. de Ridder, R. M., Roeloffzen, C. G. H. (2006). Interleavers. In: Venghaus, H. (eds) Wavelength Filters in Fibre Optics. Springer Series in Optical Sciences, Vol 123, pp. 381-432, Springer, doi:10.1007/3-540-31770-8_10.

17. Driessen A., Geuzebroek D. H., Hoekstra H. J. W. M., Kelderman H., Klein E. J. et al. (2004). Microresonators As Building Blocks For VLSI Photonics. AIP Conf. Proc., Vol. 709, Iss. 1, pp. 1–18, doi:10.1063/1.1764011.

18. Kaalund C. J., Jin Z., Li W., Peng G.-D. (2003). Novel Optical Wavelength Interleaver based on Symmetrically Parallel-Coupled and Apodized Ring Resonator Arrays. Proceedings of SPIE, Vol. 5206, Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications IX, edited by Francis T. S. Yu, Ruyan Guo, Shizhuo Yin (SPIE, Bellingham, WA), pp. 157–165, doi:10.1117/12.504535.

19. Qin W., Liu J., Zhang H.-L., Yang W.-W., Chen J.-X. (2022). Bandpass Filter and Diplexer Based on Dual-Mode Dielectric Filled Waveguide Resonators. IEEE Access, Vol. 10, pp. 29333–29340, DOI:10.1109/ACCESS.2022.3158984.

20. Dai D., Bowers J. E. (2014). Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects. Nanophotonics, Vol. 3, Iss. 4-5, pp. 283–311, De Gruyter, doi:10.1515/nanoph-2013-0021.

21. Wldaa A., Hoft M. (2022). Miniaturized Dual-Band Dual-Mode TM-Mode Dielectric Filter in Planar Configuration. IEEE Jornal of Microwaves, Vol. 2, No. 2, pp. 326–336, DOI:10.1109/JMW.2022.3145906.

22. Saha N., Brunetti G., di Toma A., Armenise M. N., Ciminelli C. (2024). Silicon Photonic Filters: A Pathway from Basics to Applications. Adv. Photonics Res., Vol. 5, Iss. 10, 2300343, pp. 1–44, doi:10.1002/adpr.202300343.

23. Trubin A. A. (2019). Electrodynamic modeling of Add-drop filters on optical microresonators. Information and Telecommunication Sciences, Iss. 1, pp. 30-36, doi:10.20535/2411-2976.12019.30-36.

24. Trubin A. A. (2024). Introduction to the Theory of Dielectric Resonators. Part of the book series: Springer Series in Advanced Microelectronics. Springer Cham, MICROELECTR., Volume 65, 363 p., doi:10.1007/978-3-031-65396-4.

Downloads

Published

2025-03-30

Issue

Section

Functional Electronics. Micro- and Nanoelectronic Technology

How to Cite

“Optimization Scattering Parameters of Optical Filters With Whispering Gallery Mode Resonators for Interleaver Building” (2025) Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, (99), pp. 49–55. doi:10.20535/RADAP.2025.99.49-55.

Most read articles by the same author(s)

1 2 3 > >>