Choice of the study object for mathematical model in Electrical Impedance Tomography
DOI:
https://doi.org/10.20535/RADAP.2013.52.120-128Keywords:
electrical impedance tomography, electrostatic model, quasi-static model, full electrodynamics modelAbstract
Introduction. A brief review of scientific publications relating to questions of the object for study modeling that implements the EIT methods is given. Formulation of the problem. EIT features associated with three-dimensionality of processes taking place in the study objects during the measurement and the complexity of the reconstruction process are shown. A comparative analysis of the quasi-static and full-wave model of the object for study is presented. Conclusion. Based on three-dimensional processes that take place in the study objects using EIT has shown that adequate models of study objects should be based on quasi-static or full-wave electrodynamics approaches.
References
Література:
Пикалов В. В. Вычислительная томография и физический эксперимент / В. В. Пикалов, Н. Г. Преображенский // Успехи физических наук. – 1983. – Т.141, № 3. – С. 469–498.
Breckon W. R. Image reconstruction in Electrical impedance tomography. / William Robert Breckon / Ph.D thesis. – School Comput.Math. Sci., Oxford Polytechnic. – Oxford, 1990. – 143 p. – Bibl.: p.132-143 (99 title). – ISSN 1749-9097.
Barber D. C. Applied potential tomography / D. C.Barber, B. H.Brown // J. Phys. E. – 1984. – V.17, No.1. – Р. 723–733.
Part 1 of Electrical Impedance Tomography: Methods, History and Applications / Ed. Holder D.S. – Bristol: Institute of Physics Publilishing. – 2004. – 64 p. – Bibl. : P. 54–64 (154 titles). – ISBN 0750309520.
Isaacson D. Electrical impedance tomography / M. Cheney, D. Isaacson, J. C. Newell // SIAM.Rev. – 1999. – Vol.41, No.1. – Р. 85–101.
Deng Y. Electromagnetic imaging methods for nondestructive evaluation applications / Y. Deng, L. Xin // Sensors. – 2011. – No.11. – Р. 11774–11808.
Bayford R. H. Bioimpedance tomography (Electrical impedance tomography) / R. H. Bayford // Annu.Rev.Biomed.Eng. – 2006. – Р. 63–91.
Nejatali A. Electrical impedance tomography with neural networks and fuzzy sets / Abdolhossein Nejatali / PhD thesis. – Dep. of Electrical and Computer Eng. University of Manitoba. – Manitoba, 1997. – 170 p. – Bibl.: p. 132–143 (99 title). – 0-612-23645-5.
Isaacson D. Full Maxwell Equations as a forward model for EIT in the mammography geometry / A. B. Brownell, D. Isaacson, G. J. Saulnier, J. C. Newell // Bioengineering Conference (NEBEC), IEEE 37th Annual Northeast, Troy, NY – 1-3 April 2011 2011. – Р. 21–22
Soni N. K. Finite element implementation of Maxwell's equations for image reconstruction in electrical impedance tomography / N. K. Soni, K. D. Paulsen, H. Dehghani, A. Hartov // IEEE Trans. on Medical Imaging. – 2006. – V.25, No.1. – Р. 55–61.
Otto G.P. Time-harmonic impedance tomography using the T-matrix method / G.P.Otto, C.C.Weng // IEEE Trans. on Medical Imaging. – 1994. – V.13. – No.3. – Р.508–516.
Doerstling B.H. A 3-D Reconstruction algorithm for linearized inverse boundary value problem for Maxwell's equations / B.H.Doerstling /. PhD thesis. – Rensselaer Polytechnic Institute, Troy NY, USA, 1995. –116 p.
Lionheart W. R. B. EIT reconstruction algorithms: pitfalls, challenges and recent developments / W. R. B. Lionheart // Physiol. Meas. – 2004. – No. 25. – Р. 125–142.
Barber D. C. Three-dimensional electrical impedance tomography / P. Metherall, D. C. Barber, R. H. Smallwood, B. H. Brown // Nature. – 1996. – V. 380. – P. 509–512.
Bahrani N. 2½D Finite Element Method for Electrical Impedance Tomography Considering the Complete Electrode Model / Navid Bahrani / Ph.D thesis. – lDepartment of Systems and Computer Engineering Carleton University, Ottawa, Ontario, Canada, January 2012 – 169 p. bibl. : P.147–153 (69 titles).
Calderón A. P. On an inverse boundary value problem / Alberto P. Calderón // Computational & Applied Mathematics. – 2006. – V.25, No. 2-3. – P. 133–138. (A reprint of the original work by A. P. Calderón at the ― Seminar on Numerical Analysis and its Application to Continuum Physics‖ in the ATAS of SBM (Rio de Janeiro), 1980, pp. 65–73).
Тихонов А. Н. Математические задачи компьютерной томографии / А. Н. Тихонов, В. Я. Арсенин, А. А. Тимонов. – М. : Наука, Гл. ред. физ.-мат. лит: 1987. – 160 с.,[1] с. ил. 21 см.
Polydorides N. Image reconstruction soft-field tomography. / Nicholas Polydorides / PhD thesis. – University of Manchester Institute of science and technology. – Manchester, 2002. – 250 p. – Bibl. : p.171–187 (175 title).
Никольский В. В. Электродинамика и распространение радиоволн / В. В. Никольский, Т. И. Никольская – М. : Наука, Гл.ред.физ.-мат.лит., 1989. – 544 с. – Библ. : C. 540–543 (80 назв.) – ISBN 5-02-014033-3.
Griffiths H. The importance of phase measurements in electrical impedance tomography / H. Griffiths // Phys. Med. Biol. – 1987. – V.32, No.11. – Р. 1435–1444.
Стеблев Ю. И. Синтез электрических полей при электроемкостной компьютерной томографии многофазных потоков / Ю. И. Стеблев, E. С. Нефедова /, Proceedings of the Fourth All-Russian Scientific Conference with international participation (29–31 May 2007). Part 4, Matem. Mod. Kraev. Zadachi, Samara State Technical Univ., Samara, 2007. – С. 100–102.
Steinmetz T. Domains of validity of quasistatic and quasistationary field approximations / T. Steinmetz, S. Kurz, M. Clemens // Proc.of XV International Symposium on Theoretical Electrical Engineering. 22-24 June 2009, Lubeck, Germany. – 2009. – Р. 271–275.
References:
Pikalov V. V., Preobrazhenskii N. G.Vychislitelnaia tomografiia i fizicheskii ekcperiment. Uspekhi fizicheskikh nauk, 1983, V.141, No.3, pp.469–498.
Breckon W. R. Image reconstruction in Electrical impedance tomography. PhD thesis – School Comput.Math. Sci., Oxford Polytechnic. Oxford, 1990, 143 p., Bibl.: pp.132-143 (99 title). ISSN 1749-9097.
Barber D. C., Brown B. H. Applied potential tomography. J. Phys. E., 1984., V.17., No.1., pp. 723–733
Part 1 of Electrical Impedance Tomography: Methods, History and Applications / Ed. Holder D.S. Bristol: Institute of Physics Publilishing, 2004, 64 p. Bibl.: pp. 54–64 (154 title). – ISBN 0750309520
Cheney M., Isaacson D., Newell J. C. Electrical impedance tomography. SIAM.Rev. – 1999, Vol.41, No.1, pp. 85–101.
Deng Y., Xin L. Electromagnetic imaging methods for nondestructive evaluation applications. Sensors, 2011, No.11, pp.11774–11808.
Bayford R. H. Bioimpedance tomography (Electrical impedance tomography). Annu.Rev.Biomed.Eng, 2006, pp. 63–91.
Nejatali A. Electrical impedance tomography with neural networks and fuzzy sets. PhD thesis. Dep. of Electrical and Computer Eng. University of Manitoba. Manitoba, 1997, 170 p.
Brownell A. B., Isaacson D., Saulnier G. J., Newell J. C. Full Maxwell Equations as a forward model for EIT in the mammography geometry. Bioengineering Conference (NEBEC), IEEE 37th Annual Northeast, Troy, NY – 1-3 April 2011 2011, pp. 21–22
Soni N. K., Paulsen K. D., Dehghani H., Hartov A. Finite element implementation of Maxwell's equations for image reconstruction in electrical impedance tomography. IEEE Trans. on Medical Imaging, 2006, V.25, No.1,pp. 55–61.
Otto G. P., Weng C. C. Time-harmonic impedance tomography using the T-matrix method. IEEE Trans. on Medical Imaging, 1994, V.13, No.3, pp. 508–516.
Doerstling B. H. A 3-D Reconstruction algorithm for linearized inverse boundary value problem for Maxwell's equations. PhD thesis. Rensselaer Polytechnic Institute, Troy NY, USA, 1995. 116 p.
Lionheart W.R.B. EIT reconstruction algorithms: pitfalls, challenges and recent developments. Physiol.Meas, 2004, No.25, pp. 125–142.
Barber D. C., Smallwood R. H., Brown B. H. Three-dimensional electrical impedance tomography. Nature, 1996, V. 380, pp. 509–512.
Bahrani N. 2½D Finite Element Method for Electrical Impedance Tomography Considering the Complete Electrode Model. PhD thesis. – Department of Systems and Computer Engineering Carleton University, Ottawa, Ontario, Canada, 2012. 169 p.
Calderón A. P. On an inverse boundary value problem. Computational & Applied Mathematics, 2006, V.25, N.2-3, pp.133–138. (A reprint of the original work by A. P. Calderón at the ― Seminar on Numerical Analysis and its Application to Continuum Physics‖ in the ATAS of SBM (Rio de Janeiro), 1980, pp. 65–73).
Тikhonov A. N., Apsenin V. Ya., Timonov A. A. Matematicheskie zadachi komputernoi tomografii. М. : Nauka, Hl.red.fiz.-mat.lit., 1987, 160 p.
Polydorides N. Image reconstruction soft-field tomography. PhD thesis. University of Manchester Institute of science and technology. Manchester, 2002, 250 p.
Nikol‘skii V. V., Nikol‘skaia T. I. Elektrodinamika i rasprostranenie radiovoln. М. : Nauka, Hl.red.fiz.-mat.lit., 1989, 544 p. Bibl.: pp.540-543 (80 titles). ISBN 5-02-014033-3.
Griffiths H. The importance of phase measurements in electrical impedance tomography. Phys. Med. Biol., 1987, v.32, No.11, pp.1435–1444.
Steblev Yu. I., Nefelova E. S. Sintez elektricheskirh polei pri elektroemkostnoi komputernoi tomografii mnohofaznykh potokov. Proceedings of the Fourth All-Russian Scientific Conference with international participation (29–31 May 2007). Part 4, Matem. Mod. Kraev. Zadachi, Samara State Technical Univ., Samara, 2007, pp.100–102.
Steinmetz T., Kurz S., Clemens M. Domains of validity of quasistatic and quasistationary field approximations. Proc.of XV International Symposium on Theoretical Electrical Engineering. 22-24 June 2009, Lubeck, Germany, 2009, pp. 271–275.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).