Two dimensional microwave imaging of shielded objects

Authors

  • E. V. Guseva National Technical University of Ukraine, Kyiv Politechnic Institute, Kiev http://orcid.org/0000-0003-1968-7036
  • M. S. Gorb National Technical University of Ukraine, Kyiv Politechnic Institute, Kiev

DOI:

https://doi.org/10.20535/RADAP.2014.58.35-46

Keywords:

microwave imaging, finite element method, Newton–Gauss method

Abstract

Introduction. Microwave imaging is noninvasive method for determination objects internal structure (complex dielectric permittivity) by means of electromagnetic fields. Algorithm for solving microwave imaging problem of two-dimensional shielded objects is described.
Methods. The direct problem is solved by finite element method, inverse problem by iterative Newton-Gauss method using Tikhonov regularization. Sensitivity matrix is calculated with numerically efficient method based on the reciprocity principle.
Results. Solution of the inverse problem without noise makes it possible to determine the value of the dielectric constant of each element of the object up to a third mark. In the case of incorporation of noise, results of the inverse problem solution are unsatisfactory, since the algorithm converges only with significant signal/noise ratio.
Conclusions. Further work should be directed to improve algorithm for solving the inverse problem, especially on the algorithm of calculating the sensitivity matrix.

Author Biographies

E. V. Guseva, National Technical University of Ukraine, Kyiv Politechnic Institute, Kiev

Cand. of Sci. (Techn), Assoc. Prof.

M. S. Gorb, National Technical University of Ukraine, Kyiv Politechnic Institute, Kiev

Postgraduate student

References

Перелік посилань

Mojabi P. Eigenfunction contrast source inversion for circular metallic enclosures / P. Mojabi, J.L.Vetri // Inv. Problems. – 2010. – Vol.26, №2. – pp.1-23.

Gilmore C. Microwave Imaging of Human Forearms: Pilot Study and Image Enhancement / C. Gilmore, A. Zakaria., S. Pistorius., J.L.Vetri // Intern. Journal of Biomed. Imaging. – 2013. – Vol. 2013, Article ID 673027, 17 p.

Fang Q. Computational Methods for Microwave Medical Imaging : PhD Thesis / Qianqian Fang ; Thayer School of Engineering Dartmouth College. – Hanover, New Hampshire, 2004. – 357 p.

Drogoudis D.G. Microwave tomography employing an adjoint network based sensitivity matrix / D.G. Drogoudis, G.A. Kyriacou, J.N. Sahalos // Progress In Electromagnetics Research, PIER. – 2009. – Vol. 94,№ 6. – pp. 213–242

Gilmore C. Enhancement of microwave tomography through the use of electrically conducting enclosures / C. Gilmore, J.L. Vetri // Inverse Problems. – 2008. – Vol.24, №3. – 21 p.

Никольский В.В. Электродинамика и распространение радиоволн: Учеб. пособие для вузов. / В.В. Никольский, Т.И. Никольская. – М. : Наука. Гл. ред. физ–мат. лит., 1989. – 544с. – ISBN 5–02–014033–3.

Okechukwu F.E. Medical imaging / F.E. Okechukwu. – Croatia. : Intech Publisher, 2011. – 400 p. – ISBN 978–953–307–774–1.

Volakis J.L. Finite Element Method for Electromagnetics / J.L Volakis, A. Chatterjee, L.C. Kempel. – New York : IEEE PRESS, 1998. – 344 p. – ISBN 0–7803–3425–6.

Jin J. The finite element method in electromagnetics. Sc.Ed. / J. Jin. – New York: Wiley–Interscience, 2002. – 753 p. – ISBN 0–471–43818–9.

Reddy C.J. Finite element method for eigenvalue problems in electromagnetics. NASA Tech.Rep. / C.J. Reddy, M.D. Deshpande, C.R. Cockrell, F.B. Beck. – Hampton, VA : Langley Res.Center, 1994. – 28p.

Aster R.C. Parameter estimation and inverse problems. Sc.Ed / R.C. Aster, B. Borchers, C.H. Thurber. – Amsterdam: Elsevier, 2005. –301p. – ISBN 0-12-065604-3.

Soleimani M. Image and shape reconstruction methods in magnetic induction and electrical impedance tomography : PhD thesis / M. Soleimani ; University of Manchester, Faculty of Engineering and Physical Sciences School of Mathematics. – Manchester, 2005. – 247 p.

Бронштейн И.Н. Справочник по математике для инженеров и учащихся втузов / И.Н. Бронштейн, К.А. Семендяев. – М. : Наука, 1980. – 976 с.

Yorkey T.J. Comparing reconstruction algorithms for electrical impedance tomography / T.J. Yorkey, J.G. Webster, W.J. Tompkins // IEEE Trans.on Biomed. Eng. – 1987. – Vol. 34, №11. – pp. 843-852.

Fanq Q. Microwave image reconstruction from 3-D fields coupled to 2-D parameter estimation / Q. Fang, P.M. Meaney, S.D. Geimer, A.V. Streltsov, K.D. Paulsen // IEEE Trans. on Med. Imag. – 2004. – Vol.23, №4. – pp. 475-484.

Polydorides N. Image reconstruction algorithms for soft-field tomography : PhD thesis / Nicholas Polydorides ; University of Manchester ; Institute of science and technology. – Manchester, 2005. – 250 p.

Lionheart W.R.B. EIT reconstruction algorithms: pitfalls, challenges and recent developments / W.R.B. Lionheart // Physiol. Meas. – 2004. – Vol. 25, №1. – p. 125-142.

Franchois A. Microwave Imaging-Complex Permittivity Reconstruction with a Levenberg-Marquardt Method / A. Franchois, C.Pichot // IEEE Trans. on Anten. Prop. – 1997. –Vol. 45, №2. – pp. 203-215.

References

Mojabi P. and Vetri J.L. (2009) Eigenfunction contrast source inversion for circular metallic enclosures. Inverse Problems, Vol. 26, No. 2, pp.1–23.

Gilmore C., Zakaria A., Pistorius S. and Vetri J.L. (2013) Microwave Imaging of Human Forearms: Pilot Study and Image Enhancement. Intern.Journal of Biomed.Imag., Vol. 2013, Article ID 673027, 17 p.

Fang Q. (2004) Computational Methods for Microwave Medical Imaging, PhD Thesis / Thayer School of Engineering Dartmouth College, Hanover, New Hampshire, 357 p.

Drogoudis D.G., Kyriacou G.A. and Sahalos J.N. (2009) Microwave tomography employing an adjoint network based sensitivity matrix. Progress In Electromagnetics Research, PIER, Vol. 94, No. 6, pp. 213–242.

Gilmore C. and Vetri J.L. (2008) Enhancement of microwave tomography through the use of electrically conducting enclosures. Inverse Problems, Vol.24, No.3, 21 p.

Nikolskiy V.V. and Nikolskaya T.Y. (1989) Elektrodinamika i rasprostranenie radiovoln [Electrodynamics and wave propagations]. Moscow, Nauka Publ., 544 p.

Okechukwu F.E. (2011) Medical imaging. Croatia, Intech Publisher, 400 p.

Volakis J.L., Chatterjee A. and Kempel L.C. (1998) Finite Element Method for Electromagnetics. New York, IEEE PRESS, 344p.

Jin J. (2002) The finite element method in electromagnetics. Sc.Ed. New York, Wiley–Interscience, 753p.

Reddy C.J., Deshpande M.D., Cockrell C.R. and Beck F.B. (1994) Finite element method for eigenvalue problems in electromagnetics. NASA Tech. Rep., Langley Res.Center, Hampton, VA, , 28p.

Aster R.C., Borchers B. and Thurber C.H. (2005) Parameter estimation and inverse problems. Sc.Ed, Amsterdam, Elsevier, 301p.

Soleimani M. (2005) Image and shape reconstruction methods in magnetic induction and electrical impedance tomography. PhD thesis, University of Manchester, Faculty of Engineering and Physical Sciences School of Mathematics, Manchester, 247 p.

Bronshtein I.N. and Semendyaev K.A. (1980) Spravochnik po matematike dlya inzhenerov i uchashchikhsya vtuzov [Handbook of mathematics for engineers and students of technical colleges]. Moscow, Nauka Publ., 976 p.

Yorkey T.J., Webster J.G. and Tompkins W.J. (1987) Comparing reconstruction algorithms for electrical impedance tomography. Biomedical Engineering, IEEE Transactions on, Vol.34, No.11, pp. 843-852.

Fang Q., Meaney P.M., Geimer S.D., Streltsov A.V. and Paulsen K.D. (2004) Microwave image reconstruction from 3-D fields coupled to 2-D parameter estimation. Medical Imaging, IEEE Transactions on, Vol.23, No.4, pp.475-484.

Polydorides N. (2002) Image reconstruction algorithms for soft-field tomography. PhD thesis, University of Manchester. Institute of science and technology, Manchester, 250 p.

Lionheart W.R.B. (2004) EIT reconstruction algorithms: pitfalls, challenges and recent

developments. Physiol. Meas., Vol. 25, No.1, p.125-142.

Franchois A., Pichot C. (1997) Microwave Imaging-Complex Permittivity Reconstruction with a Levenberg-Marquardt Method. Antennas and Propagation, IEEE Transactions on, Vol. 45, No.2, pp. 203-215.

Published

2014-09-30

How to Cite

Гусєва, О. В. and Горб, М. С. (2014) “Two dimensional microwave imaging of shielded objects”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, 0(58), pp. 35-46. doi: 10.20535/RADAP.2014.58.35-46.

Issue

Section

Electrodynamics. Microwave devices. Antennas