Own waves in a transversely inhomogeneous open cylindrical dielectric waveguide

Authors

  • M. S. Gorb National Technical University of Ukraine, Kyiv Politechnic Institute, Kiev
  • E. V. Guseva National Technical University of Ukraine, Kyiv Politechnic Institute, Kiev http://orcid.org/0000-0003-1968-7036

DOI:

https://doi.org/10.20535/RADAP.2011.46.13-21

Keywords:

Inhomogtntous dielectrical waveguide, cylindrical coordinate system, method of partial regions, transverse wave numbers, propagation constant

Abstract

By the point matching method, taking into account only the even electric longitudinal field components, is considered the eigenvalue problem – constant propagation in inhomogeneous dielectric waveguide. The following model is accepted: a dielectric waveguide of round cross-section with single circular heterogeneity. A result of numerical studies of the dependence of the propagation constant for different types of waves, depending on the parameters and the location of the in homogeneity, are introduced. The results of the study can be extended to the study of waveguides with a cross section of different shapes and/or contain multiple heterogeneous domains with different parameters

Author Biographies

M. S. Gorb, National Technical University of Ukraine, Kyiv Politechnic Institute, Kiev

Postgraduate Student

E. V. Guseva, National Technical University of Ukraine, Kyiv Politechnic Institute, Kiev

Cand. Of Sci (Technics), Associate Prof.

References

Никольский В.В. Электродинамика и распространение радиоволн. – М.: Наука.,1973. – 607с.

Янке.Е., Эмде Ф., Лёш Ф. Специальные функции. – М.: Наука.,1968. – 344с.

Yamashita E. Modal analysis of homogeneous optical fibers with deformed boundaries// IEEE Trans. – 1979. – V. MTT.-27. – №4. – p.352-356.

Yamashita E. Composite dielectric waveguides // IEEE Trans. – 1980. – V. MTT.-28. – №9. – p.986-990.

Yamashita E. Composite dielectric waveguides with two elliptic-cylinder boundaries // IEEE Trans. – 1981. – V. MTT.-29. – №9. – p.987-990.

Rothwell E.J., Frasch L.L. Propagation characteristics of dielectric-rod-loaded waveguides // IEEE Trans. – 1988. – V. MTT.-36. – №3. – p.594-600.

Yeo S.P. Application of least-squares boundary residual method to the analysis of a circular waveguide loaded with a nonconcentric dielectric rod// IEEE Trans. – 1990. – V. MTT.- 38. – №8. – p.1092-1095.

James J.R., Gallett, I.N.L. Point-matched solutions for propagating modes on arbitrarily- shaped dielectric rods// IEEE Radio and Electronic Engineer. – 1972. – V.42. – №3. – p.103-113.

Маркузе Д. Оптические волноводы. – М.: Мир.,1974. – 567с.

Высшая математика: Учеб. пособие/ П.Ф. Овчинников, Ф.П. Яремчук, В.М. Михайленко; Под общ. ред. П.Ф. Овчинникова. – К.: Вища шк. Головное изд-во, 1987. –552 с.

How to Cite

Горб, М. С. and Гусєва, О. В. (2011) “Own waves in a transversely inhomogeneous open cylindrical dielectric waveguide”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, 0(46), pp. 13-21. doi: 10.20535/RADAP.2011.46.13-21.

Issue

Section

Electrodynamics