Radiotechnical Remote Identification of Liquids in Closed Dielectric Containers

Authors

  • P. P. Loshitskyi National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv https://orcid.org/0000-0003-2349-0092
  • K. S. Ustenko National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv https://orcid.org/0000-0002-8381-5357
  • I. V. Tkachuk National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv

DOI:

https://doi.org/10.20535/RADAP.2021.85.14-20

Keywords:

thermal electromagnetic field, fluctuations in differential temperature, solution concentration, broadband noise emission, electrolytes and non-electrolytes

Abstract

Remote study of liquid systems is associated with significant difficulties associated with experimental studies and mathematical modeling based on these studies. Standard methods for investigating liquids are mainly spectroscopic methods in various frequency ranges from neutron diffractometry to acoustic spectroscopy, which are very difficult or even impossible to apply for remote sensing. Interpretation of experimental results and attempts to construct physical models based on them is possible only in the simplest cases. Suffice it to recall that the simplest and most widespread solvent, water, is still poorly studied and does not have a generally accepted single model.

In this paper, we consider a technique and a measuring complex for remote investigation of liquid electrolytes and non-electrolytes by measuring and analyzing fluctuations in the differential temperature of an intermediate liquid medium (distilled water), in which a container (container) with a test liquid is placed. The proposed technique is based on the fact that the object under study, although it has electroneutrality, that is, equality to zero on average of the fluctuation local charge density and the average fluctuation current density, which means the equality of the average value of the electromagnetic field to zero, but other averaged characteristics, for example, quadratic in the field, may differ from zero. The quadratic characteristics of a thermal electromagnetic field determine its energy, which has a nonzero finite value, which can be measured by an appropriate sensor and characterize the source of the field - a macroscopic body - heated to a certain temperature. The results of studies of mixtures of electrolytes and non-electrolytes of various concentrations, as well as their mixtures are presented. It is shown that it is possible to distinguish between the studied liquids, and how to combine the components of solutions of given concentrations to obtain the specified properties of the entire solution.

Author Biographies

P. P. Loshitskyi , National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv

Professor, Dr. Sc.

K. S. Ustenko , National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv

Ph.D student 

References

Перечень ссылок

Гольдаде В. А., Пинчук Л. С. Физика конденсированного состояния: Уч.для вузов. под ред. Н. К. Мышкина. — Минск: «Белорусская наука». — 2009. — 648 с.

Байков Ю. А., Кузнецов В. М. Физика конденсированного состояния: учебное пособие. — 4-е изд., электрон. — Москва: Лаборатория знаний. — 2020. – 296 с.

Goodson K., Asheghi M. Near-field optical thermometry // Microscale Thermophysical Engineering. 1: 225–235. 1997. https://doi.org/10.1080/108939597200241.

Hee Hwan Roh, Joon Sik Lee et al. Novel nanoscale thermal property imaging technique: The 2ω method. II. Demonstration and comparison // Journal Vacuum Science and Technology B, 24 (5), 2006, pp. 2405–2411. https://doi.org/10.1116/1.2353843.

Chirtoc M., Henry J. 3ω hot wire method for micro-heat transfer measurements: From anemometry to scanning thermal microscopy (SThM) // The European Physical Journal Special Topics, 153, 2008, pp. 343 –348. https://doi.org/10.1140/epjst/e2008-00458-8.

Займан Дж. Модели беспорядка. Теоретическая физика однородно неупорядоченных систем: Пер.с англ. — М.: Мир, 1982. — 598с.

Под ред. проф. А. П. Беляева. Физическая и коллоидная химия: учебник. — М.: ГЭОТАР-Медиа, 2010. — 704с.: ил.

Лошицкий П. П., Минзяк Д. Ю. Исследование неинвазивных методов диагностики и терапии / Медична інформатика та інженерія. — 2012, №2, стр.53–59.

Лошицкий П. П., Устенко К. С. Дистанционная идентификация жидкостей в закрытых диэлектрических емкостях / Modern Engineering and Innovative Technologies. Issue №12/Part 3, pp. 15–24. DOI: 10.30890/2567–5273.2020–12–03–047.

Дмитриев А. С. Введение в нанотеплофизику / Дмитриев А.С. — М.: БИНОМ. Лаборатория знаний, 2015, 793 с.

Квасников И. А. Термодинамика и статистическая физика Т.1: Теория равновесных систем. Термодинамика. Учебное пособие. Изд. 2-е сущ. перераб.и доп. – М.: Едиториал УРСС, 2002. — 240 с. в 3-х т.

Ландау Л. Д., Лифшиц Е. М. Статистическая физика. Часть 1. — Издание 5-е. — М.: Физматлит., 2001. — 616 с. — («Теоретическая физика», том V).

Casas-Vazquez J., Jou D. Temperature in non-equilibrium states: a review of open problems and current proposals // Reports on Progress in Physics. 66. 2003. pp. 1937–2023. https://iopscience.iop.org/article/10.1088/0034-4885/66/11/R03.

Полевой В. Г. Теплообмен флуктуационным электромагнитным полем. — М.: Наука. — 1990. — 188 c.

Джексон Р. Г. Новейшие датчики. /Перевод с англ. — М.: Техносфера, 2007. — 386 с.

Дамаскин Б. Б. и др. Электрохимия/ Б.Б. Дамаскин, О.А. Петрий, Г.А. Цирина. — М.: Химия, КолосС, 2006. — 672 с.: ил.

References

Goldade V. A., Pinchuk L. S., Myshkin N. K. (ed.) (2009). Condensed Matter Physics: Study for Universities [Fizika kondensirovannogo sostoyaniya]. Minsk: "Belarusian Science". 648 p. [In Russian].

Baikov Yu. A., Kuznetsov V. M. (2020). Condensed matter physics: textbook, 4th ed. [Fizika kondensirovannogo sostoyaniya: uchebnoe posobie, 4-e izd.]. Moscow: Laboratory of Knowledge. 296 p. [In Russian].

Goodson K., Asheghi M. (1997). Near-field optical thermometry. Microscale Thermophysical Engineering, Vol. 1, Iss. 3, pp. 225-235. doi: 10.1080/108939597200241.

Hee Hwan Roh, Joon Sik Lee et al. (2006). Novel nanoscale thermal property imaging technique: The 2ω method. II. Demonstration and comparison. Journal Vacuum Science and Technology B, Vol. 24, Iss. 5, pp. 2405-2411. DOI: 10.1116/1.2353843.

Chirtoc M., Henry J. F. (2008). 3ω hot wire method for micro-heat transfer measurements: From anemometry to scanning thermal microscopy (SThM). The European Physical Journal Special Topics, Vol. 153, pp. 343 -348. doi: 10.1140/epjst/e2008-00458-8.

Ziman J. M. (1979). Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems, 598 p.

Belyaev A. P. (ed.) (2010). Physical and colloidal chemistry: textbook [Fizicheskaya i kolloidnaya himiya: uchebnik]. M.: GEOTAR-Media, 704 p. [In Russian].

Loshickij P. P., Minzjak D. Ju. (2012). Research on non-invasive diagnostic and therapeutic methods [Issledovanie neinvazivnyh metodov diagnostiki i terapii]. Medical Informatics and Engineering [Medychna informatyka ta inzheneriia], Iss. 2, pp. 53–59. [In Russian].

Loshickij P. P., Ustenko K. S. (2020). Remote identification of liquids in closed dielectric containers [Distancionnaja identifikacija zhidkostej v zakrytyh dijelektricheskih emkostjah]. Modern Engineering and Innovative Technologies, Iss.12, part 3, pp. 15-24. doi: 10.30890/2567-5273.2020-12-03-047. [In Russian].

Dmitriev A. S. (2015). Introduction to nano-thermal physics. M.:BINOM, 793 p. [In Russian].

Kvasnikov I. A. (2002). Thermodynamics and Statistical Physics Vol.1: Theory of Equilibrium Systems. Thermodynamics. 2nd ed. [Termodinamika i statisticheskaja fizika T.1: Teorija ravnovesnyh sistem. Termodinamika. Uchebnoe posobie. Izd. 2-e], Moscow: Editorial URSS, 240 p. [In Russian].

Landau L. D., Lifshits E. M. (2001). Statistical physics. Part 1. Edition 5th. M .: Fizmatlit., 2001 . 616 p. - ("Theoretical Physics", volume V). [In Russian].

Casas-Vazquez J., Jou D. (2003). Temperature in non-equilibrium states: a review of open problems and current proposals. Reports on Progress in Physics, Vol. 66, No. 11, pp. 1937-2023.

Polevoy V. G. (1990). Heat exchange by a fluctuation electromagnetic field. Moscow: Nauka, 188 p. [In Russian].

Jackson R. G. (2004). Novel Sensor and Sensing. Institute of Physics Publishing. doi: 10.1201/9780429138348.

Damaskin B. B., Petrij O. A. and G.A. Cirina. (2006). Electrochemistry [Jelektrohimija]. Moscow: Himija, KolosS, 672 p. [In Russian].

Published

2021-06-30

How to Cite

Лошицкий , П. П., Устенко, К. С. and Ткачук , И. В. (2021) “Radiotechnical Remote Identification of Liquids in Closed Dielectric Containers”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, (85), pp. 14-20. doi: 10.20535/RADAP.2021.85.14-20.

Issue

Section

Telecommunication, navigation, radar systems, radiooptics and electroacoustics