Radio technical characteristics of loop plasma antennas

Authors

  • V. V. Ovsyanikov Dnipropetrovsk National University of O. Gonchar, Dnipropetrovsk
  • I. V. Kashuba National Mining University, Dnipropetrovsk

DOI:

https://doi.org/10.20535/RADAP.2013.55.34-41

Keywords:

plasma antenna, conductivity and permittivity of cold plasma, mercury, VSWR, efficiency

Abstract

Influence of mercury vapors in the frequency range 50-500 MHz on the specific conductivity (SC) of cold plasma of gas discharge by the loopback asymmetrical PA is probed. It is shown that in the injection of mercury vapors in the plasma antenna its conductivity grows. Two characteristic options of filling of the plasma antenna by mercury in number of 30 mg and 70 mg are probed. Taking into account data retrieved on specific conductivity in the frequency range computer simulation of the main electrodynamics characteristics of loopback PA VSWR and efficiency is executed. It is set that the more mercury impurity in the PA, the closer VSWR to 1 that is the advantage factor, on the other hand the increase in vapors of mercury leads to lowering of efficiency of PA on the average 25-30% that is undesirable. Comparing the results of calculation of VSWR as a result of experiment for PA is executed. It is recommended, for obtaining best values of VSWR and efficiency of PA and improving of an ecological situation near PA whenever possible to reduce the volume of entered mercury vapors to values of 30 mg and below.

Author Biographies

V. V. Ovsyanikov, Dnipropetrovsk National University of O. Gonchar, Dnipropetrovsk

Doc. of Sci(Techn), Professor

I. V. Kashuba, National Mining University, Dnipropetrovsk

student

References

Литература

Pat. 1309031 USA, Aerial Conductor for Wireless Signaling and Other Purposes / J. Hettinger. – № 172792 ; filing date 04.06.1917 ; date of patent 08.07.1919. – 10 p.

Jenn D.C. Plasma antennas: Survey of Techniques and the Current State of the Art / D.C. Jenn ; Naval Postgraduate School. – San Diego, CА, USA, 2003. – 27 p. [Publ.]

Anderson Т. Plasma Antennas / Т. Anderson. – Norwood, Artech House, 2011. – 226 p. – ISBN 978-1-60807-143-2.

Овсяников В.В. Широкополосный СВЧ излучатель на основе плазмы газового разряда / В.В. Овсяников // Радиофизика и радиоастрономия. – 2001. – Т. 6, № 3. – С. 261-267. [Publ.]

Александров А.Ф. Основы электродинамики плазмы: Учеб. пособие для вузов / А.Ф. Александров, Л.С. Богданкевич, А.А. Рухадзе; Под ред. А.А. Рухадзе. – М. : Высш. школа, 1978. – 407 с.

Гинзбург В. Л. Распространение электромагнитных волн в плазме / В. Л. Гинзбург – M. : Гос. изд. физ.-мат. лит., 1960. – 552 с.

References

Hettinger J. (1919) Aerial Conductor for Wireless Signaling and Other Purposes. Patent USA, No 1309031.

Jenn D.C. (2003) Plasma antennas: Survey of Techniques and the Current State of the Arti. San Diego, CА, USA, 27 p. Available at: http://hdl.handle.net/10945/778

Anderson Т. (2011) Plasma Antennas. Norwood, Artech House, 226 p.

Ovsyanikov V. V. (2001) Broadband Microwave Emitter on a Basis of Gas Discharge Plasma. Radio physics and radio astronomy, Vol. 6, No. 3, pp. 261-267 (in Russian). Available at: http://journal.rian.kharkov.ua/index.php/ra/article/view/885

Aleksandrov A.F., Bogdankevich L.S., Rukhadze A.A. (Eds.) (1978) Osnovi elektrodinamiky plazmi [Fundamentals of plasma electrodynamics]. Moskow, Vissh. Shkola Publ., 407 p.

Ginzburg V.L. (1960) Rasprostranenie elektromagnitnikh voln v plasme [The propagation of electromagnetic waves in a plasma]. Moskow, 552 p.

Published

2013-12-11

How to Cite

Овсяников, В. and Кашуба, И. (2013) “Radio technical characteristics of loop plasma antennas”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, 0(55), pp. 34-41. doi: 10.20535/RADAP.2013.55.34-41.

Issue

Section

Electrodynamics. Microwave devices. Antennas