Comparative analysis of the crystal-like and traditional microstrip structures efficiency
DOI:
https://doi.org/10.20535/RADAP.2014.59.93-102Keywords:
electromagnetic crystal, crystal-like inhomogeneity, 3D-simulation, microstrip filterAbstract
Introduction. Microstrip frequency selective devices are widely used in radio systems for various purposes. Crystal-like structures and devices that used for frequency selection of signals problems are described.Crystal-like inhomogeneities. The types of inhomogeneities in microstrip devices are viewed. The limitations of the effectiveness of traditional microstrip structures are analyzed.
Electromagnetic crystals efficiency. The efficiency of the EC based on proposed inhomogeneities with traditional solutions based on microstrip line is compared. It is shown that by using three-dimensional inhomogeneities in the EC structure, area is reduced by 40%.
Comparison of the devices’ characteristics. On an example of the narrow-band filter efficiency of the proposed three-dimensional low-impedance EC-inhomogeneities from the side of the signal conductor with one-dimensional inhomogeneities of traditional microstrip line are compared. It is shown that the filter width reduced in half.
Conclusions. Using the proposed three-dimensional low-and high-impedance EC-inhomogeneities in the structure of EC increases its efficiency in comparison with traditional microstrip line. Thus, value of Tmin decreases from –43 dB to –73 dB for one of the considered ECs. The transition from single- and two-dimensional inhomogeneities to three-dimensional low-impedance inhomogeneities from the side of the signal conductor reduces the width of EC-filter twice.
References
Перелік посилань
Назарько А. И. Электромагнитные кристаллы на основе низкоомных неоднородностей / А. И. Назарько, Е. А. Нелин, В. И. Попсуй, Ю. Ф. Тимофеева // ЖТФ. – 2011. – Т. 81, Вып. 5. – С. 142-143.
Назарько А. И. Высокоизбирательный электромагнитный кристалл / А. И. Назарько, Е. А. Нелин, В. И. Попсуй, Ю. Ф. Тимофеева // ЖТФ. – 2010. – Т. 80, Вып. 4. – С. 138-139.
Radisic V. Novel 2-D photonic bandgap structures for microstrip lines / V. Radisic, Y. Qian, R. Coccioli, T. Itoh // IEEE Microwave and Guided Wave Letters. – 1998. – Vol. 8, N 2. – pp. 69-71.
Rumsey I. Photonic bandgap structures used as filters in microstrip circuits / I. Rumsey, M. Piket-May, P.K. Kelly // IEEE Microwave and Guided Wave Letters. – 1998. – Vol. 8, N 10. – pp. 336-338.
Weng L. H. An overview on defected ground structure / L. H. Weng, Y. C. Guo, X. W. Shi et al. // Progress In Electromagnetics Research. – 2008. – Vol. 7, B. – pp. 173-189.
Беляев Б. А. Исследование микрополосковых аналогов полосно-пропускающих фильтров на одномерных фотонных кристаллах / Б. А. Беляев, А. С. Волошин, В. Ф. Шабанов // Радиотехника и электроника. – 2006. – Т. 51, № 6. – С. 694-701.
Пат. 58413 Україна, МПК H 01 P 3/00. Електромагнітнокристалічний пристрій / А. І. Назарько, Є. А. Нелін ; заявник НТУУ «КПІ». – № u201011608; заявка. 29.09.2010 ; опубл. 11.04.2011, Бюл. № 7/2011. – 4 с.
Нелин Е. А. Высокоэффективные электромагнитно-кристаллические неоднородности / Е. А. Нелин, А. И. Назарько // ЖТФ. – 2013. – Т. 83, Вып. 4. – С. 146-148.
Нелин Е. А. Резонансная и полосовая фильтрация на основе двухфазных кристаллоподобных структур / Е. А. Нелин, А. И. Назарько // ЖТФ. – 2012. – Т. 82, Вып. 10. – С. 128-130.
Біденко П. С. Мікросмужковий фільтр на основі двовимірних неоднорідностей / П.С. Біденко, А.І. Назарько // Вісник НТУУ «КПІ». Серія Радіотехніка. Радіоапаратобудування. – 2011. – № 46. – с. 111-115.
Hong J. S. Microstrip Filters for RF/Microwave Applications / J. S. Hong. – Wiley, 2011. – 655 p.
References
Nazar’ko A. I., Nelin E. A., Popsui V. I. and Timofeeva Yu. F. (2011) Electromagnetic Crystals Based on Low-Impedance Inhomogeneities. Technical Physics, vol. 56, no. 5, pp. 728-730.
Nazarko A. I., Nelin E. A., Popsui V. I. and Timofeeva Yu. F. (2010) High-Selectivity Electromagnetic Crystal. Technical Physics, vol. 55, no. 4, pp. 569-570.
Radisic V., Qian Y., Coccioli R. and Itoh T. (1998) Novel 2-D photonic bandgap structures for microstrip lines. IEEE Microwave and Guided Wave Letters, vol. 8, no. 2, pp. 69-71.
Rumsey I., Piket-May M. and Kelly P.K. (1998) Photonic bandgap structures used as filters in microstrip circuits. IEEE Microwave and Guided Wave Letters, vol. 8, no. 10, pp. 336-338.
Weng L. H., Guo Y. C., Shi X. W. and Chen X.-Q. (2008) An overview on defected ground structure. Progress In Electromagnetics Research B, vol. 7, pp. 173-189.
Belyaev B. A., Voloshin A. S. and Shabanov V. F. (2006) Analysis of Microstrip Analogues of Bandpass Filters on One-Dimensional Photonic Crystals. Journal of Communications Technology and Electronics, vol. 51, no. 6, pp. 653-659.
Nazarko A. I. and Nelin Ye. A. (2011) Elektromahnitnokrystalichnyi prystrii [Electro-magneto-crystalline device] Patent UA, no. 58413. (in Ukrainian)
Nelin E. A. and Nazarko A. I. (2013) Effective electromagnetocrystalline inhomogeneities. Technical Physics, vol. 58, no. 4, pp. 612-614.
Nelin E. A. and Nazarko A. I. (2012) Resonance and band filtration on the basis of two-phase crystal-like structures. Technical Physics, vol. 57, no. 10, pp. 1449-1452.
Bidenko, P. S. and Nazarko, A. I. (2011) Microstrip filter based on 2D inhomogeneities. Visn. NTUU KPI, Ser. Radioteh. radioaparatobuduv., no. 46, pp. 111-115. (in Ukrainian)
Hong J. S. (2011) Microstrip Filters for RF/Microwave Applications, Second Edition. Wiley, 655 p.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).