Комп’ютерно-інтегрований метод виявлення об’єктів поляризаційним тепловізором
DOI:
https://doi.org/10.20535/RADAP.2021.85.21-26Ключові слова:
дистанційне спостереження, тепловізор, інфрачервона поляриметріяАнотація
Досліджено спрощену математичну модель перетворення і аналізу інфрачервоного випромінювання фоно-цільової обстановки різного ступеня поляризації в тепловізорах. Розглядається монохроматичне випромінювання, яке містить природню та лінійно поляризовану компоненти. Модель поляризованого оптичного сигналу є адитивною. Стан поляризації об’єктів описується параметрами вектора Стокса. Розглянуто принципи формування поляризаційних зображень та їх аналізу з використанням обертових поляризатора і фазової пластинки. На виході оптичної системи встановлено матричний приймач випромінювання. Він перетворює двовимірний розподіл інтенсивності випромінювання в електричний відеосигнал. Таке поєднання поляриметричного та відео каналів утворює поляризаційний тепловізор, який сформував нову перспективну нішу технічних засобів дистанційного зондування. Запропоновано алгоритм обробки сигналів в поляризаційних тепловізорах за умови того, що у випромінюванні цілі лінійно поляризована компонента є більш вираженою, ніж у випромінюванні фону. На етапі аналізу поляризації сумарного сигналу, що надходить від фоно-цільової обстановки, визначається напрям переважної поляризації всього зображення. У випадку спостереження малорозмірних цілей він співпадає з напрямом поляризації фону. За рахунок вирізання оптичними засобами вказаної поляризаційної компоненти сигналу із загальної суміші, велика частина фонового зображення усувається, а повністю поляризована компонента випромінювання цілі залишається значною мірою збереженою. Контраст кінцевого зображення цілі на фоні суттєво зростає, збільшується ймовірність правильного виявлення цілі.
Посилання
References
Vollmer M., Mollman K.-P. (2018). Infrared Thermal Imaging. Fundamentals, Research and Applications. Second Edition. WileyVCH: Weinheim, Germany, 788 p. ISBN: 978-3-527-41351-5.
Vollmer M., Henke S., Karstadt S., Mollmann K.-P., Pinno F. (2004). Identification and Suppression of Thermal Reflections in Infrared Thermal Imaging. InfraMation Proceedings, Vol. 5, pp. 287-298.
Peri´c D., Livada B., Peri´c M. and Vuji´c S. (2019). Thermal Imager Range: Predictions, Expectations, and Reality. Sensors, Vol. 19(15), 3313, pp. 1–23. DOI:10.3390/s19153313.
Tooley R. D. (1990). Man-Made Target Detection Using Infrared Polarization. Proc. SPIE, Polarization considerations for optical systems II, Vol. 1166, pp. 52-60. DOI:10.1117/12.962878.
Sadjadi F. A., Chun C. S. L. (2003). Automatic detection of small objects from their infrared state-of-polarization vectors. Optics letters, Vol. 28, No. 7, pp. 531-533. DOI:10.1364/OL.28.000531.
Zhang Y., Shi Z. G., Qiu T. W. (2017). Infrared small target detection method based on decomposition of polarization information. Journal of Electronic Imaging, Vol. 26, No. 3. DOI: 10.1117/1.JEI.26.3.033004.
Jian Gong, Liang Liu, Youjin He. (2018). The infrared polarization characteristics of ship-target in marine environment. Optical Sensing and Imaging Technologies and Applications, 108460W, pp. 1-10. DOI:10.1117/12.2504055.
Goldstein D. H. (2011). Polarized Light. Third edition. CRC Press is an imprint of Taylor & Francis Group. London New York, 786 p. DOI: 10.1201/b10436.
Schuster N., Kolobrodov V. G. (2004). Infrarotthermographie. Zweite, überarbeitete und erweiterte Ausgabe. WILEYVCH. Berlin, 354 p. ISBN: 978-3-527-40509-1.
Chrzanowski K. (2010). Testing thermal imagers. Practical guidebook. Military University of Technology, 00-908 Warsaw, Poland, 164 p. ISBN: 978-83-61486-81-7.
Kaplan H. (2007). Practical Applications of Infrared Thermal Sensing and Imaging Equipment. 3rd ed. SPIE Press (Washington), 192 p. ISBN: 9780819467232.
Born M., Wolf E. (1999). Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edn. Press, Cambridge: Cambridge University, 950 p. DOI: 10.1017/CBO9781139644181.
Zhao Y., Yi C., Kong S. G., Pan Q., Cheng Y. (2016). Multi-ban Polarization Imaging and Applications, Part of the Advances in Computer Vision and Pattern Recognition. National Defense Industry Press, Beijing and Springer-Verlag Berlin Heidelberg, 194 p. DOI: 10.1007/978-3-662-49373-1.
Gurton K. P., Yuffa A. J., Videen G. W. (2014). Enhanced facial recognition for thermal imagery using polarimetric imaging. Optics Letters, Vol. 39, No. 13, pp. 3857-3859. DOI: 10.1364/OL.39.003857.
Kolobrodov V. G., Lykholit M. I. (2007). Proektuvannya teploviziynykh i televiziynykh system sposterezhennya [Design of thermal imaging and television surveillance systems]. K.: NTUU «KPI», 364 p. ISBN 966-622-230-2. [In Ukrainian].
Liu M., Zhang X., Liu T., Shi G., et al. (2019). On-Orbit Polarization Calibration for Multichannel Polarimetric Camera. Applied Science, Vol.9, No.7. DOI: 10.3390/app9071424.
Zhao Y., Gong P., Pan Q. (2008). Object Detection by Spectropolarimeteric Imagery Fusion. IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 10, pp. 3337-3345. DOI: 10.1109/TGRS.2008.920467.
Kolobrodov V. G., Mykytenko V. I., Tymchik G. S. (2020). Polyaryzatsiyna model' teplokontrastnykh ob'yektiv sposterezhennya [Polarization model of thermal contrast objects of observation]. Termoelektryka, No. 1, pp. 36-52. ISSN 1726-7714. [In Ukrainian].
Karpenko I. V., Kolobrodov V. G., Sokol B. V. (2018). Polyaryzatsiynyy metod vyyavlennya teplo kontrastnoyi tsili na foni zavad [Polarization method for detecting heat contrast target against the background of interference]. Visnyk KhNU, seriya: Tekhnichni nauky, No.1, pp. 33–37. ISSN 2307-5732. [In Ukrainian].
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2021 Володимир Микитенко
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
1. Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у нашому журналі.
2. Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована нашим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у нашому журналі.
3. Політика журналу дозволяє і заохочує розміщення рукопису роботи авторами в мережі Інтернет (наприклад, на arXiv.org або на особистих веб-сайтах). Причому рукописи статей можуть бути розміщенні у відкритих архівах як до подання рукопису до редакції, так і під час його редакційного опрацювання. Це сприяє виникненню продуктивної наукової дискусії, позитивно позначається на оперативності ознайомлення наукової спільноти з результатами Ваших досліджень і як наслідок на динаміці цитування вже опублікованої у журналі роботи. Детальніше про це: The Effect of Open Access.