Application of eigenfunction expansion method to the microwave tomography


  • M. S. Gorb National Technical University of Ukraine, Kyiv Politechnic Institute, Kiev
  • E. V. Guseva National Technical University of Ukraine, Kyiv Politechnic Institute, Kiev



microwave imaging, microwave tomography, eigenfunction expansion method


Introduction. Literature review and description of the microwave imaging is presented. Underlined advantages, application, description of experimental setups, and methods for solving forward and inverse problem.
Methods. Described an algorithm for solving the problem of microwave tomography using eigenfunction expansion method. Object of research is shielded (to limit the area of calculation and avoid accounting radiation waves of the continuous spectrum) transversely inhomogeneous object, with the possibility of further complications to the longitudinally inhomogeneous object. Proposed to apply eigenfunction expansion method for solving forward problem of microwave imaging.
Expected results. Improving accuracy of calculation longitudinally homogeneous object, compared with the two-dimensional problem, numerically effective calculation of the three-dimensional objects (transversely and longitudinally inhomogeneous) in comparison with other numerical methods.

Author Biographies

M. S. Gorb, National Technical University of Ukraine, Kyiv Politechnic Institute, Kiev

Gorb M.S.

E. V. Guseva, National Technical University of Ukraine, Kyiv Politechnic Institute, Kiev

Guseva E.V.


Gorb, N. S. and Guseva, E. V. (2013) Choice of the study object for mathematical model in Electrical Impedance Tomography. Visn. NTUU KPI, Ser. Radioteh. radioaparatobuduv., no. 52, pp. 120-128. (in Ukrainian)

Garcia M.G. (2013) Multi-antenna multi-frequency microwave imaging systems for biomedical applications: PhD Thesis / Universitat Politècnica de Catalunya.–Barcelona, 183 p.

Fang Q. (2004) Computational Methods for Microwave Medical Imaging: PhD Thesis / Thayer School of Engineering Dartmouth College.–Hanover, New Hampshire, 357 p.

Gunnarsson T. (2006) Microwave Imaging of Biological tissues: the current status in the research area. Available at:

Paulsen K.D., Lynch D.R. and Strohbehn J.W. (1988) Three-dimensional finite, boundary, and hybrid element solutions of the Maxwell equations for lossy dielectric media. IEEE Trans.on Microw. Theory and Techn., Vol.36, No.4, pp.682-693.

Jin J. (2010) Theory and computation of electromagnetic fields. New Jersey, John Wiley & Sons, 572p. ISBN: 978-0-470-53359-8.

Garg R. (2008) Analytical and computational methods in electromagnetism. Boston, London, Artech House, 528 p. ISBN: 13: 978-1-59693-385-9.

Davidson D.B. (2011) Computational Electromagnetics for RF and Microwave Engineering. Cambridge, Cambridge University Press, 505p. ISBN: 978-0-521-51891-8.

Chari M. V. K. and Salon S. J. (2000) Numerical methods in electromagnetism. San Diego, Academic Press, 767p. ISBN: 0-12-615760-X.

Fang Q., Meaney P.M., Geimer S.D., Streltsov A.V. and Paulsen K.D. (2004) Microwave image reconstruction from 3-D fields coupled to 2-D parameter estimation. IEEE Trans. on Med. Imag., Vol.23, No.4, pp.475-484.

Fanq Q., Meaney P.M. and Paulsen K.D. (2010) Viable Three-Dimensional Medical Microwave Tomography: Theory and Numerical Experiments. IEEE Trans.on Anten.Prop., Vol. 58, No 2, pp. 449-458.

Drogoudis D.G., Kyriacou G.A. and Sahalos J.N. (2009) Microwave tomography employing an adjoint network based sensitivity matrix. PIERS, Vol. 94, No. 6, pp.213-242.

Okechukwu F.E. (2011) Medical imaging. Croatia, Intech Publisher, 400 p.

Franchois A. and Pichot C. (1997) Microwave Imaging-Complex Permittivity Reconstruction with a Levenberg-Marquardt Method. Anten. Prop., IEEE Trans. on, Vol. 45, No 2, pp. 203-215.

Zaeytijd J.D., Franchois A., Eyraud C. and Geffrin J.M. (2007) Full-Wave Three-Dimensional Microwave Imaging With a Regularized Gauss–Newton Method – Theory and Experiment. Anten. Prop, IEEE Trans. on, Vol. 55, No 11, pp. 3279-3292.

Rubæk T., Kim O.S. and Meincke P. (2009) Computational Validation of a 3-D Microwave Imaging System for Breast-Cancer Screening. Anten.Prop., IEEE Trans.on, Vol. 57, No 7, pp. 2105-2115.

Abubakar A., Berg P.M. and Mallorqui J.J. (2002) Imaging of Biomedical Data Using a Multiplicative Regularized Contrast Source Inversion Method. IEEE Trans.on on Microw. Theory and Techn., Vol. 50, No 7, pp.1761-1771.

Meaney P.M., Paulsen K.D., Geimer S.D., Haider S.A. and Fanning M.W. (2002) Quantification of 3-D Field Effects During 2-D Microwave Imaging. IEEE Trans. on Biomed. Engin., Vol. 49, No 7, pp.708-720.

Gilmore C. (2009) Towards an Improved Microwave Tomography System: PhD Thesis, University of Manitoba, Winnipeg, 205 p.

Holder D.S. (2005) Electrical Impedance Tomography: Methods, History and Applications. Bristol, Philadelphia, Institute of Physics Publishing, 464 p.

Guseva, E. V. and Gorb, M. S. (2014) Two dimensional microwave imaging of shielded objects. Visn. NTUU KPI, Ser. Radioteh. radioaparatobuduv., no. 58, pp.35-46. (in Ukrainian)

Grzegorczyk T.M., Meaney P.M., Kaufman P.A., diFlorio-Alexander R.M. and Paulsen K.D. (2012) Fast 3-D Tomographic Microwave Imaging for Breast Cancer Detection. Med. Imag., IEEE Trans. on, Vol.31, No 8, pp.1584-1592.

Mojabi P, Ostadrahimi M., Shafai L. and Vetri J.L. (2012) Microwave Tomography Techniques and Algorithms: A Review. Antenna Technology and Applied Electromagnetics, 15th International Symposium on, pp.1-4.

Gilmore C., Zakaria A., Pistorius S. and Vetri J.L. (2013) Microwave Imaging of Human Forearms: Pilot Study and Image Enhancement. Intern. Journal of Biomed.Imag., Vol. 2013, p.1-17

Semenov S.Y., Bulyshev A.E., Abubakar A., Posukh V.G., Sizov Y.E., Souvorov A.E.,

van den Berg P.M. and Williams T.C. (2005) Microwave-Tomographic Imaging of the High Dielectric-Contrast Objects Using Different Image-Reconstruction Approaches. Microw. Theory and Techn., IEEE Trans.on, Vol. 53, No 7, pp.2284-2294.

Chew W.C. (1995) Waves and fields in inhomogeneous media. New York, IEEE PRESS, 608p.

Barybin А. А. (2007) Elektrodinamika volnovedushchikh sistem. Teorija vozbuzhdenija i svjazi voln. [Electrodynamics of waveguide system. Excitation and mode coupling theory]. Moscow, 512 p. – ISBN 978-5-9221-0740-2.

Doerstling B.H. (1995) A 3-D Reconstruction algorithm for linearized inverse boundary value problem for Maxwell's equations: Ph.D thesis, Rensselaer Polytechnic Institute, New York, 116 p.

Bahrani N. (2012) 2½D Finite Element Method for Electrical Impedance Tomography Considering the Complete Electrode Model: Ms.Sc thesis, Carleton University, Ottawa, Ontario, 153 p.

Mojabi P. and Vetri J.L. (2009) Eigenfunction contrast source inversion for circular metallic enclosures. Inv.Problems. Vol. 26, No. 2, pp.1–23.

Gilmore C., Vetri J.L. (2008) Enhancement of microwave tomography through the use of electrically conducting enclosures. Inv. Problems, Vol. 24, No. 3, pp. 1-21

Reddy C.J., Deshpande M.D., Cockrell C.R. and Beck F.B. (1994) Finite element method for eigenvalue problems in electromagnetics. Tech.Rep., NASA, Langley Res.Center, Hampton, VA, 28 p.

Vayinshtein L. A. (1988) Elektromagnitnye volny [Electromagnetic waves]. Moscow, , 440 p. ISBN 5-256-00064-0.

Berezhnoi V.A. and Kurdyumov V.N. (2013) Lektsii po vysokochastotnoi elektrodinamike [Lectures on the high-frequency electrodynamics]. Moscow, 405 p. – ISBN 978-5-94274-227-0.

Zhang J.P. and Chen K.M. (2000) Mode-matching analysis of the induced electric field in a material sample placed within an energized cylindrical cavity. PIERS. Vol.28, pp. 295–311.

Guseva, E. V. and Gorb, M. S. (2014) Eigenvalue problem of open inhomogeneous dielectric waveguide. Visn. NTUU KPI, Ser. Radioteh. radioaparatobuduv., no. 56, pp. 42-54. (in Ukrainian)



How to Cite

Горб, Н. and Гусева, Е. (2014) “Application of eigenfunction expansion method to the microwave tomography”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, 0(59), pp. 121-129. doi: 10.20535/RADAP.2014.59.121-129.



Radioelectronics Medical Technologies