Models of optimum radio-systems on the vector combinatorial configurations
DOI:
https://doi.org/10.20535/RADAP.2015.60.45-58Keywords:
antenna array, radio-signal, optimization, ring structure, optimal relationship, vector sequence, cyclic group, optimum relationship, monolithic code, torusAbstract
Method for construction of optimum radio systems, based on a new conceptual model of the systems - Ideal Ring Vector structures (clusters of the IRV) is proposed. IRV clusters are cyclic ordered sequences of t- integer sub-sequences of the sequence which form perfect relationships of t-dimensional partitions over a virtual t-dimensional lattice covered surface of a finite space interval. The sums of connected sub-sequences of an IRV enumerate the set of tcoordinates specified with respect to cyclic frame reference exactly R-times. This property makes IRVs useful in applications which need to partition multidimensional objects with the smallest possible number of intersections. This sort of models can be used for finding optimal solution for wide classes of technological problems based on the idea of “perfect” vector combinatorial constructions, and expanding the applicability of two-, three- and multidimensional IRV as multidimensional cyclic relationships for fundamental and applied research in systems engineering, for improving such quality indices as vector data coding and signal reconstruction, resolving ability and low side lobe antenna design. There are regarded basic properties these models and made comparative analysis of the models with difference sets. It is shown that the IRVs to be in exceed of difference sets multiply, and set of the classical difference sets is subset of the IRVs. Short review of the methods relating to constructing of the optimum models of non-uniform antenna arrays with respect to low side lobe is given. The problem statement involves development the regular method for construction of the optimum radio-systems using two- and three-dimensional IRVs, and some examples are regarded for illustration its technical merits including algorithm of synthesis of two-dimensional symmetric antenna with 12 elements which provides sufficiently low side lobe radiation levels and shows a flat gain over the frequency range is presented. Method for design of two- or multidimensional vector signals coded based on the optimum binary monolithic code is presented.References
Перелік посилань
Свердлик М.Б. Оптимальные дискретные сигналы / М.Б. Свердлик. – М. : Советское радио, 1975. – 200 с.
Tompson A.R. Interferometry and Synthesys in Radio Astronomy / A.R. Tompson, J.M. Moran, G.W. Swenson Jr. – New York : Wiley, 1986. – doi: 10.1002/9783527617845.indauth
Kopilovich L. E. Minimization of the number of elements in large radio interferometers / L. E. Kopilovich // Monthly Notices of the Royal Astronomical Society. – 1995. – Vol. 274, No. 2. – pp. 544-546.
Ризнык В. В. Об одном способе оптимального построения дискретных систем / В. В. Ризнык // Электроника и моделирование. – 1975. – Вып. 8. – К. : Наукова думка. – С.12-15.
Холл М. Комбинаторика / М. Холл ; под ред. А.О. Гельфонда и В. Е. Тараканова. – М. : Мир. – 1970. – 470с.
Baumert L.D. Cyclic Difference Sets. Lecture Notes in Mathematics. – 1971. – vol. 182. – 167 p.
Singer J. A theorem in finite projective geometry and some applications to number theory/ J.Singer // Transactions of the American Mathematical Society. – 1938. – vol. 43, no. 3. – pp. 377-377.
Пат US4071848 МКИ H01Q21/22 Thinned Aperiodic Antenna Arrays with Improved Peak Sidelobe Level Control / D.G. Leeper ; заявл. 26.11.1976, US05/745231 ; опубл. 31.01.1978.
Копилович Л.Е. Одномерные и двумерные неэквидистантные антенны-решетки с низким уровнем боковых лепестков : препринт №293 / Л.Е. Копилович, Л.Г. Содин ; АН УССР, Ин-т радиофизики и электроники. – 1986. – Харьков : ИРЭ. – 39 с.
Чаплин А. Ф. Оптимальные радиосистемы на комбинаторных моделях / А.Ф. Чаплин, В.В. Ризнык, О.Я. Ризнык, Б.В. Коваль, И.Р. Захарчук // Контрольно-измерительная техника. – 1987. – Вып. 42. – С. 84-86.
Наукова школа [Електронний ресурс]. – Режим доступу: http://iknit.lp.edu.ua/riznyk/science.html. – Назва з екрану.
Різник В.В. Дослідження комбінаторних конфігурацій та їх застосування для синтезу технічних пристроїв і систем з нееквідистантною структурою: Автореф. Дис…. д-ра техн. наук: 28.10.94 / В. В. Різник; Вінницький державний технічний університет. – Вінниця, 1994. – 42 с.
Різник В. В. Синтез оптимальних комбінаторних систем / В. В. Різник. – Львів : Вища школа, 1989. – 165 с.
Riznyk V.V. Multi-dimensional Systems Based on Perfect Combinatorial Models / V.V. Riznyk // IEE Colloquium on Multidimensional Systems: Problems and Solutions. – 1998. - P.5/1-5/4.
Riznyk W. Application of the Golden Numerical Rings for Configure Acoustic Systems of Fine Resolution / W. Riznyk // Acta Physica Polonica A. – 2011. – Vol.119, Is. 6A. - P.1046-1049.
Riznyk V. Application of the gold ring bundles for innovative non-redundant radar or sonar systems / V. Riznyk, O. Bandyrska // The European Physical Journal Special Topics. – 2008. –Vol.154. – P. 183-186.
Riznyk V. Application of the gold ring bundles for innovative non-redundant sonar systems / V.Riznyk, O.Bandyrska, D.Skrybaylo-Leskiv // Archives of Acoustics. – 2006. – Vol.31, №4(S). – P. 379-384.
References
Sverdlik M.B. (1975) Optimal'nye diskretnye signaly [Optimum discrete signals]. Moskow, Sovetskoe radio Publ., 200 p.
Tompson A.R., Moran J.M. and Swenson G.W. Jr. (1986) Interferometry and Synthesys in Radio Astronomy, New York, Wiley
Kopilovich L. E. (1995) Minimization of the number of elements in large radio interferometers. Monthly Notices of the Royal Astronomical Society, vol. 274, no. 2, pp. 544-546.
Riznyk V. V. (1975) Ob odnom sposobe optimal'nogo postroeniya diskretnykh sistem [On a method of the optimum design of discrete systems]. Elektronika i modelirovanie, No 8, pp. 12-15.
Hall M. Jr. (1967) Combinatorial theory. Blaisdell Publishing Company, 470 p.
Baumert, L.D. (1971) Cyclic Difference Sets. Lecture Notes in Mathematics, vol. 182, 167 p.
Singer J. (1938) A theorem in finite projective geometry and some applications to number theory. Transactions of the American Mathematical Society, vol. 43, no. 3, pp. 377-377.
Leeper D.G. (1978) Thinned Aperiodic Antenna Arrays with Improved Peak Sidelobe Level Control. Pat. USA No 4071848.
Kopilovich L.E. and Sodin L.G. (1986) Odnomernye i dvumernye neekvidistantnye antenny-reshetki s nizkim urovnem bokovykh lepestkov : preprint no 293 [One- and two-dimensional non-uniformly spaced antenna arrays with low side lobe level. Preprint no.293]. Khar'kov, IRE, 39 p.
Chaplin A. F., Riznyk V.V., Riznyk O.Ya., Koval' B.V. and Zakharchuk I.R. (1987) Optimal'nye radiosistemy na kombinatornykh modelyakh [Optimum systems on combinatorial models]. Kontrol'no-izmeritel'naya tekhnika. Is. 42, pp. 84-86.
Naukova shkola [Scientific school]. Available at: http://iknit.lp.edu.ua/riznyk/science.html.
Riznyk V.V. (1994) Doslidzhennia kombinatornykh konfihuratsii ta ikh zastosuvannia dlia syntezu tekhnichnykh prystroiv i system z neekvidystantnoiu strukturoiu : Avtoref. dys. dokt. tekhn. nauk [Research of the combinatorial configurations and its applications for synthesis of engineering devices and systems with non-uniform structures. Dr. of Sci. (Techn.) diss.]. Vinnycia, 42 p.
Riznyk V. V. (1989) Syntez optymalnykh kombinatornykh system [Combinatorial synthesis of optimal systems]. Lviv, Vyshcha shkola, 165 p.
Riznyk V.V. (1998) Multi-dimensional Systems Based on Perfect Combinatorial Models. IEE Colloquium on Multidimensional Systems: Problems and Solutions, pp.5/1-5/4.
Riznyk W. (2011) Application of the Golden Numerical Rings for Configure Acoustic Systems of Fine Resolution. Acta Physica Polonica A, vol.119, pp.1046 -1049.
Riznyk V. and Bandyrska O. (2008) Application of the gold ring bundles for innovative non-redundant radar or sonar systems. The European Physical Journal Special Topics, Vol.154, pp.183- 186.
Riznyk V., Bandyrska O. and Skrybaylo-Leskiv D. (2006) Application of the gold ring bundles for innovative non-redundant sonar systems. Archives of Acoustics, Vol.31, No 4(S), pp. 379-384.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).