Models of optimum discrete signals on the vector combinatorial configurations




circular symmetry, ring vector sequence, cyclic group, optimum structural relationships principle, bundle’s algebra, radio-signal, code sequence, function of autocorrelation, noise immunity, optimum monolithic code, torus


Method for construction of optimum discrete signals, based on a new conceptual combinatorial model of the systems - Ideal Ring Vector sequences (clusters of the IRV) is proposed. IRV clusters are cyclic ordered sequences of t- integer sub-sequences of sequence, which form perfect relationships of t-dimensional partitions over a virtual t-dimensional lattice covered surface of a finite space interval. The sums of connected sub-sequences of an IRV enumerate the set of t- coordinates specified with respect to cyclic frame reference exactly R-times. This property makes IRVs useful in applications, which need to partition multidimensional objects with the smallest possible number of intersections. There are discover a great class of new two- and multidimensional combinatorial constructions, which being in excess classic models of discrete systems with respect to number and combinatorial varieties with theoretically non-limited values of upper boundaries on order of dimensionality –IRV. It shows that remarkable properties of IRVs encoded in fine structure of torus circular symmetry. There are regarded basic properties these models and made shortest comparative analysis of the models with classical models. Indicate that the IRVs to be in exceed of difference sets multiply, and set of the classical difference sets is subset of the IRVs. Some of useful examples for constructing of the optimum discrete signals, error-correcting codes, and ring monolithic optimum vector codes using IRVs are considered. The problem statement involves development the regular method for construction of the optimum discrete signals using two- and multidimensional IRVs. The favorable technical merits of IRVs sets named “Gloria to Ukraine Stars”, which remarkable properties hold for the same set of the IRVs in varieties permutations of its terms is demonstrated, and method for design of two- or multidimensional vector signals coded based on the optimum binary monolithic code is presented. Proposed vector models of discrete signal optimization provide, essentially, a new approach to generalize them to great class of optimized problems in radio-telecommunications, navigation and information technology. Moreover, the optimization embedded in the underlying combinatorial models. The favourable qualities of the Ideal Ring Vector sequences provide breakthrough opportunities to apply them to numerous branches of science and advanced technology, with direct applications to vector data telecommunications, signal processing, encoded design,and information technology. Structural perfection and harmony exist not only in the abstract models but in real world also.

Author Biography

V. V. Riznyk, Lviv Polytechnic National University, Lviv

Riznyk V. V.


Перелік посилань

Hall М. Jr. Combinatorial Theory / M. Jr. Hall. – Blaisell Publishing Company, 1967. – 470 p.

Різник В. В. Синтез оптимальних комбінаторних систем / В. В. Різник. – Львів : Вища школа, 1989. – 165 с.

Різник В. В. Комбінаторна оптимізація систем на основі використання спряжених симетричних та асиметричних структур / В. В. Різник // Електротехнічні та комп’ютерні системи. – 2014. – № 13(89). – с. 40-45.

Riznyk V. V. Systems Optimization Prospected from Torus Cyclic Groups / V. V. Riznyk // New Development in Pure and Applied Mathematics. – 2015. – Vienna, Austria – pp. 115-119. Available at:

Різник В. В. Моделі оптимальних радіосистем на векторних комбінаторних конфігураціях / В. В. Різник // Вісник НТУУ «КПІ». Серія Радіотехніка, Радіоапаратобудування. – 2015. – № 60. – с. 45-58.

Ризнык В.В. Об одном способе оптимального построения дискретных систем / В. В. Ризнык // Электроника и моделирование. – 1975. – Вып. 8. – С.12-15.

Barker R. H. Group Synchronization of Binary Digital Systems. In: Communication Theory / R. H. Barker, W. Jackson, ed. – New York : Academic Press, 1953. – pp. 273-287.

Різник В. В. Оптимальні коди на векторних комбінаторних конфігураціях / В.В.Різник // Вісник НУЛП «Інформаційні системи та мережі». – 2015. – № 814. – с. 130-138.


Hall М. Jr.(1967) Combinatorial Theory. Blaisell Publishing Company, 470 p.

Riznyk V. V. (1989) Syntez optymalnykh kombinatornykh system [Synthesis of the combinatorial optimal systems]. Lviv, Vyshcha shkola, 165 p.

Riznyk V. V. (2014) Combinatorial optimization of systems based on symmetric and asymmetric structure usage. Elektrotekhnichni ta komp'iuterni systemy, No 13(89), pp. 40-45 (in Ukrainian).

Riznyk V. V. (2015) Systems Optimization Prospected from Torus Cyclic Groups. New Development in Pure and Applied Mathematics, Vienna, Austria, March 15-17, P.115-119.

Riznyk, V. V. (2015) Models of optimum radio-systems on the vector combinatorial configurations. Visn. NTUU KPI, Ser. Radioteh. radioaparatobuduv., no. 60, pp. 45-58. (in Ukrainian).

Riznyk V. V. (1975) Оb odnom sposobe optimal’nogo postroyeniya diskretnykh system [A method of the optimum design of discrete systems]. Elektronika i modelirovanie, No 8, pp.12-15.

Barker R. H. (1953) Group Synchronization of Binary Digital Systems. In: Communication Theory (W. Jackson, ed.). Academic Press, New York, pp. 273-287.

Riznyk V. V. (2015) Optymalni kody na vektornykh kombinatornykh konfihuratsiiakh [Optimum codes on vector combinatorial configurations]. Visnyk NU "Lvivska politekhnika". Informatsiini systemy ta merezhi, No 814, pp.130-138.



How to Cite

Різник, В. В. (2016) “Models of optimum discrete signals on the vector combinatorial configurations”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, 0(65), pp. 13-25. doi: 10.20535/RADAP.2016.65.13-25.



Radio Circuits and Signals