Two-stage causal unifrom image filtration with presence of correlated noise
DOI:
https://doi.org/10.20535/RADAP.2016.66.19-28Keywords:
uniform image, image filtration, combine estimates, a posteriori probability density, random field, correlated noiseAbstract
Introduction. Quality of raw single SAR images is low due to the presence of a specific type of noise in the form of speckle noise. Therefore it is necessary to use filtering for SAR images preprocessing. However, the developed filters often ignore spatial correlation of speckle which occurs in practice. This reduces the efficiency of noise suppression. Optimal two-dimensional noise filtering algorithms require large computational costs. In this paper we propose a two-step algorithm for filtering the correlated noise which can significantly reduce the computational costs compared to the two-dimensional filtering algorithms. Proposed algorithm also have computational efficiency of one-dimensional recurrence algorithms.
Theoretical results. For the description of an image and the correlated noise (CN) by rows and columns Gaussian Markov models in the form of discrete dynamical systems are used. The joint one-dimensional algorithm for image and noise filtration by rows and columns is used in the first step. It was created on the basis of Kalman filtering apparatus by combining models’ state vectors of the images and CN. Prediction and filtering errors in image and CN are correlated at each point. The algorithm obtained with the use of conditional independence of properties for images and CN pixels by row and column is executed in the second phase. An expression for the a posteriori probability density of the image and CN samples, as well as an algorithm for computing its expectation and the correlation matrix are given. The two-stage filtering algorithm belongs to a class of causal because the second stage of the filtration uses results from first stage for combining. First stage is executed by the rows and columns on the received observations up to current sample with inclusion.
Experimental results. In the example image and CN have separable exponential and gaussian correlation functions respectively. The application of the developed algorithm has allowed to increase the SNR by 4.7 dB. The data fusion algorithm in the second stage provides a gain of 1 dB in addition to the gain obtained in the first stage by filtering only by rows. The developed algorithm provided gain of 1.6 dB SNR compared to the two-step filtering algorithm for discrete white noise with the same noise variance.
Conclusions.The two-step algorithm for filtering CN on the uniform image was obtained. Developed algorithm has the first stage where joint one-dimensional filtering of the image and CN is performed by the rows and columns. The second stage is the union of the estimates derived from image and CP at each point. This algorithm significantly reduces computation cost compared to an optimal two-dimensional algorithm and thus ensure acceptable accuracy characteristics that are higher than that of one-dimensional filtering algorithms.
References
Перечень ссылок
Argenti F. Speckle removal from SAR images in the undecimated wavelet domain / F. Argenti, L. Alparone // IEEE Transactions on Geoscience and Remote Sensing. – 2002. – vol. 40, no. 11. – pp 2363-2374.
Solbo S. A stationary wavelet-domain Wiener filter for correlated speckle / S. Solbo, T. Eltoft // IEEE Transactions on Geoscience and Remote Sensing. – 2008. – Vol. 46, No. 4. – pp 1219-1230.
Абрамов С. К. Эффективность фильтрации одновзглядовых РСА-изображений при пространственно-коррелированных помехах / С. К. Абрамов, Р. А. Кожемякин, С. С. Кривенко, Н. Н. Пономаренко, В. В. Лукин // Радіоелектронні і комп’ютерні системи. - 2012. – № 3. – с. 18-25. - Режим доступу: http://nbuv.gov.ua/UJRN/recs_2012_3_5
Грузман И. С. Цифровая обработка изображений в информационных системах: Учеб. пособие / И.С. Грузман, В.С. Киричук, В.П. Косых, Г.И. Перетягин, А.А. Спектор. – Новосибирск. : Изд-во НГТУ, 2003. – 352 с.
Жук С. Я. Методы оптимизации дискретных динамических систем со случайной структурой / С. Я. Жук. – К. : НТУУ «КПИ», 2008. – 232с.
Грузман И. С. Двухэтапная фильтрация изображений на основе использования ограниченных данных / И. С. Грузман, В. И. Микерин, А. А. Спектор // Радиотехника и электроника. – 1995. – Вып. 5. – С. 817-822.
Вишневый С. В. Двухэтапная совместная каузальная фильтрация и сегментация неоднородных изображений / С. В. Вишневый, С. Я. Жук // Известия высших учебных заведений. Радиоэлектроника. – 2011. – T. 54, № 1. – С. 46-53. – Режим доступа: http://radio.kpi.ua/article/view/S0021347011010067
Глазов Г. Н. Моделирование дискретных гауссовых случайных полей. В кн. «Интеллектуальные системы в управлении, конструировании и образовании». Вып. 2 / Г. Н. Глазов, А. Г. Костевич. ; под ред. А. А. Шелупанова. – Томск: STT, 2002. – С. 19-27. Режим доступа: http://micran.ru/sites/micran_ru/data/UserFile/File/Publ/2002/Modelling.pdf
Абрамова В. В. Проблемы оценивания дисперсии пространственно-коррелированного шума в спектральной области и один из возможных путей их решения / В. В. Абрамова, В. В. Лукин, C. К. Абрамов, К. Д. Абрамов, Е. О. Колганова // Системи обробки інформації. – 2012. – № 7. – С. 34-39.
Вишневый С.В. Двухэтапная каузальная фильтрация цифровых полутоновых изображений / С.В. Вишневый, С.Я. Жук // Вестник НТУУ «КПИ». Серия Радиотехника. Радиоаппаратостроение. – 2010. – № 41. – с. 60-64.
References
Fabrizio Argenti, Luciano Alparone (2002) Speckle removal from SAR images in the undecimated wavelet domain, IEEE Transactions on Geoscience and Remote Sensing, Vol. 40, No. 11, pp 2363 - 2374. doi: 10.1109/tgrs.2002.805083.
Solbo S. and Eltoft T. (2008) A Stationary Wavelet-Domain Wiener Filter for Correlated Speckle, IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 4, pp. 1219-1230. doi: 10.1109/tgrs.2007.912718
Abramov S. K., Kozhemiakin R. O., Krivenko S. S., Ponomarenko N. N., Lukin V. V. (2012) Efficiency Filtering of Single-Look Sar-Images with Spatially Correlated Speckle. Radіoelektronnі і komp’yuternі sistemi, No 3, pp. 18-25. (in Russian)
Gruzman I.S., Kirichuk V.S., Kosykh V.P., Peretyagin G.I. and Spektor A.A. (2002) Tsifrovaya obrabotka izobrazhenii v informatsionnykh sistemakh [Digital image processing in information systems]. Novosibisrk, NGTU Publ., 352 p.
Zhuk S.Ya. (2008) Metody optimizatsii diskretnykh dinamicheskikh sistem so sluchainoi strukturoi [Methods of optimization of discrete dynamical systems with random structure], Kiev, NTUU «KPI», 232 p.
Gruzman I.S., MikerinV. I. and Spektor A. A. (1995) Dvukhetapnaya fil'tratsiya izobrazhenii na osnove ispol'zovaniya ogranichennykh dannykh [Two-stage filtering of images on the basis of limited data]. Radiotekhnika i elektronika, Iss. 5, pp. 817-822.
Vishnevyy S. V. and Zhuk S. Ya. (2011) Two-stage mutual causal filtration and segmentation of heterogeneous images, Radioelectronics and Communications Systems, Vol. 54, No. 1, pp. 37-44. doi: 10.3103/S0735272711010067
Glazov G. N. and Kostevich A. G. (2002) Modelirovanie diskretnykh gaussovykh sluchainykh polei [Simulation of discrete Gaussian random fields], pp. 19-27.
Abramova V. V., Lukin V. V., Abramov S. K., Abramov K. D. and Kolganova E. O. (2012) Problems of spatially correlated noise variance evaluation in spectral domain and one of their possible solutions. Systemy obrobky informatsii, No 7(105), pp. 34-39. (in Russian).
Vishnevyy, S. V. and Zhuk, S. Ya. (2010) Two-stage causal filtering of digital grayscale images. Visn. NTUU KPI, Ser. Radioteh. radioaparatobuduv., no. 41, pp. 60-64. (in Russian)
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).