Implementation of Reading Electronics of Silicone Photomultipliers on the Array Chip МН2ХА030

Authors

  • O. V. Dvornikov Public Joint Stock Company "MNIPI" https://orcid.org/0000-0002-6632-429X
  • V. A. Tchekhovski Institute for Nuclear Problems BSU
  • N. N. Prokopenko Don State Technical University; Institute for Design Problems in Microelectronics of RAS http://orcid.org/0000-0001-8291-1753
  • Ya. D. Galkin Belarusian State University of Informatics and Radioelectronics
  • A. V. Kunts Belarusian State University of Informatics and Radioelectronics
  • A. V. Bugakova Don State Technical University

DOI:

https://doi.org/10.20535/RADAP.2019.78.60-66

Keywords:

readout electronics, array chip, charge-sensitive amplifier, silicone photomultiplier

Abstract

The implementation of a charge-sensitive amplifier (CSA) based on the МН2ХА030 array chip (AC) with an adjustable conversion factor for processing signals of silicone photomultipliers (SPM) is considered. The developed CSA, named ADPreampl3, contains a fast and slow signal circuit (SC). The fast SC includes a transresistive amplifier-shaper with a base-level adjustment circuit, and a slow SC includes an CSA, a shaper, and a base-level restorer (BLR) circuit. The main advantage of ADPreampl3 amplifier when used in multichannel integrated circuits is the minimum number of elements used, due to the use of the same stages to perform different functions. To correctly simulate the operation of ADPreampl3, taking into account the features of the input signal source, a simplified electrical equivalent circuit of the SPM, applicable to both circuit simulation and measurements, is proposed. Circuit simulation of ADPreampl3 using the proposed equivalent circuit of SPM with a supply voltage of ±3 V, made possible to establish that: fast SC is characterized by the bandwidth up to 60 MHz and allows adjusting the base level in the range from -0.1 V to 0.2 V. Thus, it is possible to compensate the technological variation of the output voltage of the fast SC or set the required switching threshold of the comparator connected to the output of the fast SC; slow SC allows you to adjust the base level in the range from -1 V to 1 V and smoothly change the amplitude of the output signal, including phase inversion, when the control voltage changes from -1 V to 1 V; the BLR circuit provides a constant shape of the output voltage pulse with a DC input current of ADPreampl3, varying in the range of ±190 μA, and a negligible change of the base level at ±20% of the resistance variation of integrated resistors. ADPreampl3 amplifier enables the transition to the ``sleep'' mode with a decrease in current consumption up to 10 μA, maintains operability at an absorbed dose of gamma radiation up to 500 krad and the effect of the integral neutron fluence up to 1013 n/cm2 and can be used in multi-channel signal processing chips of SPM.

Author Biographies

O. V. Dvornikov, Public Joint Stock Company "MNIPI"

Dvornikov О. V.

V. A. Tchekhovski, Institute for Nuclear Problems BSU

Tchekhovski V. А.

N. N. Prokopenko, Don State Technical University; Institute for Design Problems in Microelectronics of RAS

Prokopenko N. N.

Ya. D. Galkin , Belarusian State University of Informatics and Radioelectronics

Galkin Ya. D.

A. V. Kunts, Belarusian State University of Informatics and Radioelectronics

Kunts A. V.

A. V. Bugakova , Don State Technical University

Bugakova A. V.

References

Dvornikov O.V., Tchekhovsi V.A., Dyatlov V.L. and Prokopenko N.N. (2014) An integrated circuit for silicon photomultipliers tubes. Instruments and Experimental Techniques, Vol. 57, Iss. 1, pp. 40-44. DOI: 10.1134/s0020441214010047

Dey S., Rudell J.C., Lewellen T.K. and Miyaoka R.S. (2017) A CMOS front-end interface ASIC for SiPM-based positron emission tomography imaging systems. 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS). DOI: 10.1109/biocas.2017.8325059

Cervi T., Babicz M., Bonesini M., Falcone A., Menegolli A., Raselli G.L., Rossella M. and Torti M. (2018) Characterization of SiPM arrays in different series and parallel configurations. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 912, pp. 209-212. DOI: 10.1016/j.nima.2017.11.038

Du J., Yang Y., Bai X., Judenhofer M.S., Berg E., Di K., Buckley S., Jackson C. and Cherry S.R. (2016) Characterization of Large-Area SiPM Array for PET Applications. IEEE Transactions on Nuclear Science, Vol. 63, Iss. 1, pp. 8-16. DOI: 10.1109/tns.2015.2499726

Gola A., Acerbi F., Capasso M., Marcante M., Mazzi A., Paternoster G., Piemonte C., Regazzoni V. and Zorzi N. (2019) NUV-Sensitive Silicon Photomultiplier Technologies Developed at Fondazione Bruno Kessler. Sensors, Vol. 19, Iss. 2, pp. 308. DOI: 10.3390/s19020308

Thiessen J.D., Jackson C., O'Neill K., Bishop D., Kozlowski P., Retière F., Shams E., Stortz G., Thompson C.J. and Goertzen A.L. (2013) Performance evaluation of SensL SiPM arrays for high-resolution PET. 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC), . DOI: 10.1109/nssmic.2013.6829318

Dvornikov O., Tchekhovski V., Dziatlau V., Prokopenko N. and Butyrlagin N. (2018) Design of low-temperature DDOAs on the elements of BiJFet array chip MH2XA030. Serbian Journal of Electrical Engineering, Vol. 15, Iss. 2, pp. 233-247. DOI: 10.2298/sjee1802233d

Dvornikov O.V., Tchekhovsi V.A., Dyatlov V.L. and Prokopenko N.N. (2014) An integrated circuit for silicon photomultipliers tubes. Instruments and Experimental Techniques, Vol. 57, Iss. 1, pp. 40-44. DOI: 10.1134/s0020441214010047

Villa F., Zou Y., Mora A.D., Tosi A. and Zappa F. (2015) SPICE Electrical Models and Simulations of Silicon Photomultipliers. IEEE Transactions on Nuclear Science, Vol. 62, Iss. 5, pp. 1950-1960. DOI: 10.1109/tns.2015.2477716

Marano D., Bonanno G., Garozzo S., Romeo G., Grasso A.D., Palumbo G. and Pennisi S. (2015) A new enhanced PSPICE implementation of the equivalent circuit model of SiPM detectors. 2015 IEEE 13th International New Circuits and Systems Conference (NEWCAS). DOI: 10.1109/newcas.2015.7182010

Bagliesi M., Avanzini C., Bigongiari G., Cecchi R., Kim M., Maestro P., Marrocchesi P. and Morsani F. (2011) A custom front-end ASIC for the readout and timing of 64 SiPM photosensors. Nuclear Physics B - Proceedings Supplements, Vol. 215, Iss. 1, pp. 344-348. DOI: 10.1016/j.nuclphysbps.2011.04.049

Przyborowski D., Kaplon J. and Rymaszewski P. (2016) Design and Performance of the BCM1F Front End ASIC for the Beam Condition Monitoring System at the CMS Experiment. IEEE Transactions on Nuclear Science, Vol. 63, Iss. 4, pp. 2300-2308. DOI: 10.1109/tns.2016.2575781

Corsi F., Foresta M., Marzocca C., Matarrese G. and Guerra A.D. (2009) ASIC development for SiPM readout. Journal of Instrumentation, Vol. 4, Iss. 03, pp. P03004-P03004. DOI: 10.1088/1748-0221/4/03/p03004

Corsi F., Dragone A., Marzocca C., Guerra A.D., Delizia P., Dinu N., Piemonte C., Boscardin M. and Betta G.D. (2007) Modelling a silicon photomultiplier (SiPM) as a signal source for optimum front-end design. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 572, Iss. 1, pp. 416-418. DOI: 10.1016/j.nima.2006.10.219

Downloads

Published

2019-09-30

How to Cite

Dvornikov, O. V., Tchekhovski, V. A., Prokopenko, N. N., Galkin , Y. D., Kunts, A. V. and Bugakova , A. V. (2019) “Implementation of Reading Electronics of Silicone Photomultipliers on the Array Chip МН2ХА030”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, (78), pp. 60-66. doi: 10.20535/RADAP.2019.78.60-66.

Issue

Section

Functional Electronics. Micro- and Nanoelectronic Technology