Scattering of Electromagnetic Waveson Lattices of Rectangular Dielectric Resonators
DOI:
https://doi.org/10.20535/RADAP.2021.84.5-10Keywords:
scattering, lattice, rectangular dielectric resonator, modeling, c-function, scattering amplitudeAbstract
The c-functions that determine the degree of influence of an external exciting electromagnetic field on a rectangular dielectric resonator (DR) in open space are calculated and investigated. The presence of directions with ''zero'' projection of the exciting electromagnetic field onto the DR field is shown. Using the perturbation theory, the spatial distribution of the scattered electromagnetic fields, which arises when a plane electromagnetic wave of p-, or s-type, is incident on a square lattice of rectangular dielectric resonators is studied. An electromagnetic model of scattering on a rectangular DR lattice is constructed. The appearance of a reflected and shadow lobe during scattering by a lattice of rectangular DRs with basic magnetic modes is demonstrated. The features of scattering by a cubic lattice with degenerate magnetic oscillations of the main type are investigated. It is shown that the degeneracy of the eigenoscillations of the resonators leads to a more complex scattering pattern: the appearance of additional lobes, as well as a change in their shape. It is noted that the shape of the spatial distribution of the scattered electromagnetic field of the grating can change noticeably with frequency variation within the frequency band of coupled oscillations of the resonators of the lattice. The obtained practical simulation results make it possible to significantly reduce the computation time and optimize complex multi-cavity structures of microwave and optical communication systems that simultaneously perform the functions of separation or combining of channels.
References
Ramaccia D., Sounas D. L., Alù A., Toscano A., Bilotti F. (2020) Phase-Induced Frequency Conversion and Doppler Effect with Time-Modulated Metasurfaces. IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, pp. 1607-1617. DOI:10.1109/TAP.2019.2952469.
Trubin A., Kupriianov A. S., Fesenko V. I., Tuz V. R. (2020) Coupling coefficients for dielectric cuboids located in free space. Applied Optics, Vol. 59, Issue 23, pp. 6918-6924. DOI:10.1364/AO.399930.
Shamkhi H. K., Sayanskiy A., Valero A. C., Kupriianov A. S., Kapitanova P., Kivshar Y. S. , Shalin A. S., Tuz V. R. (2019) Transparency and perfect absorption of all-dielectric resonant metasurfaces governed by the transverse Kerker effect. Physical Review Materials, Vol. 3, Issue 8, pp. 1-10. DOI:10.1103/PhysRevMaterials.3.085201.
Li J., Liu C., Wu T., Liu Y., Wang Y., Yu Z., Ye H., Yu L. (2019) Efficient Polarization Beam Splitter Based on All-Dielectric Metasurface in Visible Region. Nanoscale Research Letters, 14, Article number: 34. DOI:10.1186/s11671-019-2867-4.
Shi T., Wang Y., Deng Z.-L., Ye X., Dai Z., Cao Y., Guan B.-O., Xiao S., Li X. (2019) All-Dielectric Kissing-Dimer Metagratings for Asymmetric High Diffraction. Advanced Optical Materials, Vol. 7, Issue 24. DOI:10.1002/adom.201901389.
Bibbò L., Liu Q., Khan K., Yadav A., Elshahat S., Abood I., Ouyang Z. (2019) Radiation-direction steerable nanoantennae. SN Applied Sciences, Vol. 1, Article number: 844. DOI:10.1007/s42452-019-0882-9.
Guo Z., Zhu L., Guo K., Shen F., Yin Z. (2017) High-Order Dielectric Metasurfaces for High-Efficiency Polarization Beam Splitters and Optical Vortex Generators. Nanoscale Research Letters, Vol. 12, Article number: 512. DOI:10.1186/s11671-017-2279-2.
Trubin A. (2016) Lattices of Dielectric Resonators. Springer Series in Advanced Microelectronics, Vol. 53, 171 p. DOI:10.1007/978-3-319-25148-6.
Minin I. V., Minin O. V., Pacheco-Pena V., Beruete M. (2015) All-dielectric periodic terajet waveguide using an array of coupled cuboids. Applied Physics Letters, Vol. 106. DOI:10.1063/1.4923186.
Li L., Wang J., Wang J., Du H., Huang H., Zhang J., Qu S., Xu Z. (2015) All-dielectric metamaterial frequency selective surfaces based on high-permittivity ceramic resonators. Applied Physics Letters, Vol. 106. DOI:10.1063/1.4921712.
Pidgurska T. V., Trubin A. A. (2014) Novel dual-band rectangular dielectric resonator filter. X International Symposium on Telecommunications (BIHTEL), pp. 1-5. DOI:10.1109/BIHTEL.2014.6987634.
Du B., Wang J., Xu Z., Xia S., Wang J., Qu S. (2014) Band split in multiband all-dielectric left-handed metamaterials. Journal of Applied Physics, Vol. 115, Issue 23. DOI:10.1063/1.4883962.
Kumari R., Behera S. K. (2013) Nine-element frequency independent dielectric resonator array for X-band applications. Microwave and Optical technology letters, Vol. 55, No. 2, pp. 400-403. DOI:10.1002/mop.27337.
Abd-Elhady A. M., Zainud-Deen S. H., Mitkees A. A., Kishk A. A. (2012) Dual Sized Varying Slot Lengths Loading Dielectric Resonator Reflectarray. International Journal of Electromagnetics and Applications, No 2(3), pp. 46-50. DOI:10.5923/j.ijea.20120203.05.
Petosa A., Thirakoune S. (2011) Rectangular Dielectric Resonator Antennas With Enhanced Gain. IEEE Transactions on Antennas and Propagation, Vol. 59, No. 4, pp. 1385-1389. DOI:10.1109/TAP.2011.2109690.
Al-Zoubi A., Kishk A., Glisson A. W. (2008) Linear dielectric resonator antenna array fed by dielectric image line. IEEE Antennas and Propagation Society International Symposium, pp. 1-4. DOI:10.1109/APS.2008.4618987.
Trubin A. A. (2009) Electromagnetic waves scattering on a lattice of Dielectric Resonators. 19 International Crimean conference ''Microwave equipment and telecommunication technologies'', pp. 405-407. DOI:10.1109/TELSKS.2009.5339480.
Luk K. M., Leung K. W. (2003) Dielectric Resonator Antennas. Research Studies Press LTD., 388 p.
Mongia R. K., Ittipiboon A. (1997) Theoretical and Experimental Investigations on Rectangular Dielectric Resonator Antennas. IEEE Transactions on Antennas and Propagation, Vol. 45, No. 9, pp. 1348-1356. DOI:10.1109/8.623123.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 О. О. Трубін
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).