Sensitivity of phantom contour voltage to complex impedance changes of inhomogeneities in Electrical Impedance Tomography

Authors

DOI:

https://doi.org/10.20535/RADAP.2014.56.152-164

Keywords:

Electrical Impedance Tomography, phantom, finite element, conductivity zones, forward problem, inverse problem, sensitivity, anisotropy, complex voltages

Abstract

Introduction. The analysis of surface conductivity influence of inhomogeneities to the changes of complex phantom contour voltages comparing with a homogeneous phantom with complex surface conductivity is carried out. The analysis of the influence of finite element and all phantom generally anisotropy on the calculated complex voltages is conducted.
The results. The model of square finite element is obtained. It consists of 1024х1024 finite elements obtained by simplified approximate formulas. The relative increments of voltage values are unchanged regardless of the difference in the absolute values of voltages measured at different positions of the current source. It is proposed to rotate the phantom grids of finite elements and conductivity zones with the current source rotation to overcome this anisotropy.
Conclusions. Final conclusions about the limits of the measuring device sensitivity could be done only after the data accumulation of solving the inverse problem by zones conductivity method.

Author Biographies

T. Dostal, Brno University of Technology, Brno

Doc. of Sci.(Techn.), Prof.

I. O. Sushko, National Technical University of Ukraine, Kyiv Politechnic Institute, Kiev

M.S., Postgraduate Student

A. Matsai, National Technical University of Ukraine, Kyiv Politechnic Institute, Kiev

B.S.

E. V. Gaydayenko, National Technical University of Ukraine, Kyiv Politechnic Institute, Kiev

M.S., Postgraduate Student

A. I. Rybin, National Technical University of Ukraine, Kyiv Politechnic Institute, Kiev

Doc. of Sci.(Techn.), Prof.

References

Перелік посилань

Пеккер Я.С. Электроимпедансная томография / Я.С. Пеккер, К.С. Бразовский, В.Ю. Усов, М.П. Плотников, О.С. Уманский. – Томск: ООО «Издательство научно–технической литературы», 2004. – 190с.

Сушко І.О. Потенційна чутливість імпедансної томографії / І.О. Сушко, Є.В. Гайдаєнко, О.А. Якубенко // Вісник НТУУ «КПІ». Серія Радіотехніка. Радіоапаратобу-дування. – 2012. – № 50. – с. 92-104.

Дорожовець М. Математичні засади прямої задачі томографії провідності / М. Дорожовець, А. Федорчук, І. Петровська // Вісник Державного університету «Львівська політехніка». Автоматика вимірювання та керування. – 1998. – №324. – С. 43–51.

Рибін О.І. Чутливість в імпедансній томографії / О.І. Рибін, Є.В. Гайдаєнко, І.О. Сушко, О.І. Гаманенко // Вісник НТУУ «КПІ». Серія Радіотехніка. Радіоапаратобуду-вання. – 2013. – № 55. – С.106 – 114.

Schneider I. D. Design of an electrical impedance tomography phantom using active elements / I. D. Schneider , R. Kleffel, D. Jennings, A. J. Courtenay // Medical & Biological Engineering & Computing. – 2000. – № 38. – P. 390 – 394.

Kao T.–J. A Versatile High–Permittivity Phantom for EIT / T.–J. Kao, G. J. Saulnier, D. Isaacson, T. L. Szabo, J. C. Newell // IEEE Transactions on biomedical engineering. – 2008. – V. 55, № 33. – pp. 2601 – 2607.

Griffiths H. A Cole phantom for EIT / H. Griffiths // Physiological measurements Journal. – 1995. – №16. – p. 29–38.

Hahn G. Constructing resistive mesh phantoms by an equivalent 2D resistance distri-bution of a 3D cylindrical object / G. Hahn, A. Just, J. Dittmar, M. Quintel // The 12th Inter-national Conference in Electrical Impedance Tomography : 4–6 May 2011, University of Bath.

Griffiths H. A phantom for electrical impedance tomography / H. Griffiths // Clin. Phys. Physiol. Meas. – 1988. – Vol. 9A. – pp. 15–20.

Рибіна І.О. Метод променів провідностей та моделювання фантома в імпедансній томографії // Вісник ЖДТУ. – 2010. – № 53. – С.160 –161.

Рибіна І.О. Моделювання кінцевого елемента в імпедансній томографії / І.О. Рибіна, Є.В. Гайдаєнко // Вісник НТУУ «КПІ». Серія Радіотехніка. Радіоапаратобудування. – 2010. – № 41. – с. 19-24.

Гусєва О.В. Спрощена модель досліджуваного об’єкта для завдань електроімпедансної томографії / О.В. Гусєва // Вісник ЖДТУ. – 2011. – №3. – с. 128-133.

Гусєва О.В. Оцінка чутливості вимірювань потенціалів при багатоканальній імпедансній томографії / О.В. Гусєва, В.І. Найденко, О.Б. Шарпан // Наукові вісті НТУУ «КПІ». – 2006. – №1. – С. 12–18.

Дудикевич Т.В. Моделювання розподілу електричного потенціалу всередині біологічних об’єктів при резистивних томографічних вимірюваннях / Т.В. Дудикевич // Вимірювальна техніка та метрологія. – Львів. – 1995. – С. 60.

Сильвестр П. Метод конечных элементов для радиоинженеров и инженеров–электриков / П. Сильвестр, Р. Феррари. – М. : Мир , 1986. – 229с.

Сушко І.О. Алгоритм розв’язання прямої задачі імпедансної томографії методом модифікацій / І.О. Сушко // Вісник НТУУ «КПІ». Серія Радіотехніка. Радіоапаратобудування. – 2011. – № 47. – с. 165-175.

Рыбин А.И. Численно–символьный анализ электрических цепей обобщенным методом модификации / А.И. Рыбин // Праці Інституту Електродинаміки НАН України, ІЕД НАНУ. – 2002. – №1. – С. 28–30.

Sushko I.O. Features of solving the Electrical Impedance Tomography inverse problem by zones conductivities method / I. O. Sushko, A. I. Rybin // Visn. NTUU KPI, Ser. Ra-dioteh. radioaparatobuduv. – 2012. – № 51. – с. 106-114.

Сушко И.А. Визуализация распределения поверхностных проводимостей томо-графического сечения методом зон проводимости / И.А. Сушко // Известия вузов. Радиоэлектроника. – 2013. – Т. 56, № 7. – С. 60 – 68.

References

Pekker Ya. S., Brazovskiy K.S., Usov V.Yu., Plotnikov M.P. and Umanskiy O.S. (2004) Elektroimpedansnaya tomografiya, Tomsk, OOO “Izdatelstvo nauchno–tekhnicheskoi literatury”, 190 p.

Sushko, I. O., Gaydayenko, E. V., Yakubenko, A. A. (2012) Electrical Impedance To-mography potential sensitivity. Visn. NTUU KPI, Ser. Radioteh. radioaparatobuduv. no. 50, pp. 92-104. (in Ukrainian)

Dorozhovets M., Fedorchuk A., Petrovska I. (1998) Matematychni zasadi priamoi zad-achi tomografii providnosti. Visnyk Derzhavnogo universytetu “Lvivska politekhnika”. Avtomatika vymiruvannia ta keruvannya, No 324, pp. 43-51.

Rybin, A. I., Gaydayenko, E. V., Sushko, I. O., Gamanenko, A. I. (2013) The sensitiv-ity in Electrical Impedance Tomography. Visn. NTUU KPI, Ser. Radioteh. radioaparatobuduv. no. 55, pp. 107-117. (in Ukrainian)

Schneider I. D., Kleffel R., Jennings D. and Courtenay A. J. (2000) Design of an electrical impedance tomography phantom using active elements. Medical & Biological Engineering & Computing. No 38. pp. 390 – 394.

Kao T.–J., Saulnier G. J., Isaacson D., Szabo T. L. and Newell J. C. (2008) A Versatile High–Permittivity Phantom for EIT. IEEE Transactions on biomedical engineering. Vol. 55, No 33, pp. 2601–2607.

Griffiths H. A (1995) Cole phantom for EIT. Physiological measurements Journal. No 16, pp. 29–38.

Hahn G., Just A., Dittmar J. and Quintel M. (2011) Constructing resistive mesh phan-toms by an equivalent 2D resistance distribution of a 3D cylindrical object. The 12th Interna-tional Conference in Electrical Impedance Tomography.

Griffiths H. (1988) A phantom for electrical impedance tomography. Clin. Phys. Physiol. Meas. Vol. 9, pp. 15–20.

Rybina I. A. (2010) Metod promeniv providnosti ta modeliuvannia fantoma v im-pedansnii tomografii [Method conductivity beams and simulation phantom in impedance tomography]. Visnyk ZhDTU. No. 8, pp. 21–28.

Rybina I. O. and Gaydayenko E. V. (2010) Finite element modeling in impedance tomography. Visn. NTUU KPI, Ser. Radioteh. radioaparatobuduv. no. 41, pp. 19-24. (in Ukrainian)

Guseva O.V. (2011) Sproshchena model doslidzhuvanogo obyekta dlia zavdan elektroimpedansnoi tomografii [A simplified model of the object for tasks electrical impedance tomography]. Visnyk ZhDTU. No 3, pp.128 –133.

Guseva O.V., Naidenko V.I. and Sharpan O.B. (2006) Otsinka chutlivosti vymiruvan potentsialiv pry bagatokanalnii impedansnii tomografii. Naukovi visti NTUU “KPI”. No 1. pp. 12–18.

Dudykevich T.V. (1995) Modeluvannia rozpodilu elektrychnogo potentsialu vseredyni biologichnih obiektiv pri rezystyvnyh tomografichnyh vymiruvanniah [Simulation of the electric potential distribution inside biological objects with resistive tomography measurements]. Vymiruvalna tekhnika ta metrologiia, p. 60.

Silvestr P. and Ferrari R. (1986) Metod konechnyh elementov dlia radioinzhenerov I inzhenerov–elektrikov [The Finite Element Method for radio and electrical engineers], Moskow, Mir Publ., 229 pp.

Sushko, I. O. (2011) Algorithm for solving the Electrical Impedance Tomography forward problem by the modification method. Visn. NTUU KPI, Ser. Radioteh. radioaparato-buduv. no. 47, pp. 165-175. (in Ukrainian)

Rybin A.I. (2002) Chislenno–simvolnyi analiz elektricheskih tsepei obobshennym metodom modifikatsii. Pratsi Institutu Elektrodynamiky NAN Ukrainy, IED NANU. No 1. pp. 28–30.

Rybin, A. I., Sushko, I. O. (2012) Features of solving the Electrical Impedance Tomography inverse problem by zones conductivities method. Visn. NTUU KPI, Ser. Radioteh. radioaparatobuduv. no. 51, pp. 106-114.

Sushko I. (2013) Visualization of surface conductivity distributions of tomography cross-section using conductivity zones method. Radioelectronics and Communications Systems. Vol. 56, No7. pp. 60–68.

Published

2014-04-03

How to Cite

Достал, Т., Сушко, І., Мацай, А., Гайдаєнко, Є. and Рибін, О. (2014) “Sensitivity of phantom contour voltage to complex impedance changes of inhomogeneities in Electrical Impedance Tomography”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, 0(56), pp. 152-164. doi: 10.20535/RADAP.2014.56.152-164.

Issue

Section

Radioelectronics Medical Technologies

Most read articles by the same author(s)

1 2 3 4 5 > >>