Photometric Absorbance Spectrum Analyzer of Slightly Transparent Biomaterials
DOI:
https://doi.org/10.20535/RADAP.2017.69.62-65Keywords:
photometry, spectrum analyzer, biomaterials, absorption capacity, attenuating coefficient, modulating transformationAbstract
Introduction. The measurement of optical radiation, especially the intensity of the light flux passing through biological tissues or other slightly transparent (cloudy) materials and the environments is a challenging problem due to the extensive development of new light sources of different wavelengths and their use in various fields of human activity. It is important to provide high sensitivity and accuracy measurement of the output parameters of light fluxes passing through the studied material - the depth of penetration, attenuation coefficient or absorption. The known methods and devices do not provide the required sensitivity and accuracy of measuring parameters.Main body. The aim of this study is to develop a photometric spectrum analyzer where along with the simplification of the scheme and increasing sensitivity and measurement accuracy the score of penetration depth of light flux into biological or other slightly transparent material, the determination of the attenuation coefficient and the spectrogram construction based on the analysis of two signals separated by wavelength light sources is ensured. One of the ways to increase the sensitivity and accuracy of the measurement devices is to use modulating method of the output signals transformation. Implementation of this method provides a significant reduction of the proper noises of the transformation signal path. Figure 1 shows a functional diagram of the developed by the authors device based on modulating transformation of the optical signal. It provides the measurement of the slightly transparent materials absorbance with increasing sensitivity and accuracy.
Conclusions. Considered possibilities greatly simplify the measurement process. The use of the modulating transformation of the light flux provides increase in sensitivity in the measurement accuracy because such transformation compensates the intrinsic noise level and noise of the measurement channel. The semiconductor matrix is used as the light source. It provides accommodation of two crystals at one point of light diodes with the most spaced wavelengths allowing them to be placed on the same axis with photocell and excludes collateral scattering of the light flux.
References
Перелік посилань
Зеленков І. А. Фотометрія / І. А. Зеленков. – Київ : НАУ, 2003. – 211 с.
Котюк А. Ф. Основы оптической радиометрии / А. Ф. Котюк. – М. : Физматлит», 2003. – 552 с.
Гуревич М. М. Фотометрия (Теория, методы и приборы) / М. М. Гуревич. – Ленинград : Энергоатомиздат, 1983. – 272 с.
А.с. СССР №1511603 МПК G01J3/02 Полевой спектрофотометр / А. П. Кульчицкий, Л. У. Обринский, заявл.13.02.87, oпубл. 30.09.89. – Бюл.№36.
Патент України UA 381107 МПК G01, J 3/42, G01J 3/00 Фотометр / А. М. Буняк. – Бюл. №4, 2001.
А.с. СССР № 1511602 МПК G01J 3/42 Спектрофотометр / С. Ю. Герасимов ; заяв. 12.01 1987, опубл. 30.09.1989. – Бюл.№ 36.
Яненко О. П. Радіометричний модуляційний вимірювач інтенсивності оптичного випромінювання / О.П. Яненко, С.В. Михайленко, А.С. Ліснічук // Вісник НТУУ «КПІ». Серія Радіотехніка. Радіоапаратобудування. – 2014. – № 56. – с. 96-101.
Скрипник Ю. А. Модуляційні радіометричні пристрої та системи НВЧ діапазону / Ю.А. Скрипник, В.Ф. Манойлов, А.Ф. Яненко. – ЖІТІ. : 2001. – 373 с.
Иванов B. C. Фотометрия и радиометрия оптического излучения (общий курс) / B.C. Иванов, А.Ф. Котюк, В.И. Саприцкий, Р.И. Столяревская. – М. : Полиграф сервис, 2002. – 264 с.
References
Zelenkov I. A. (2003) Fotometriia [Photometry], Kyiv, NAU, 211 p.
Kotyuk A. F. (2003) Osnovy opticheskoi radiometrii [Fundamentals of optical radiometry]. Moskow, Fizmatlit, 552 p.
Gurevich M. M. (1983) Fotometriya (Teoriya, metody i pribory) [Photometry (Theory, Methods and Devices)], Leningrad, Energoatomizdat, 272 p.
Kul'chitskii A.P. and Obrinskii L.U. (1989) Polevoi spektrofotometr [Field spectrophotometer], Patent SU1511603.
Bunyak A. M. (2001) Fotometr [Photometer], Patent UA38107.
Gerasimov S. Yu. (1989) Spektrofotometr [Spectrophotometer]. Patent SU1511602.
Yanenko, A. P., Mikhailenko, S. V., Lisnichuk, A. S. (2014) Radiometric modulation measuring device of intensity of optical radiation. Visn. NTUU KPI, Ser. Radioteh. radioaparatobuduv., no. 56, pp. 96-101. (in Ukrainian)
Skrypnyk Yu. A., Manoilov V.P. and Yanenko O.P. (2001) Moduliatsiini radiometrychni prystroi ta systemy NVCh diapazonu [Microwave modulating radiometric devices and systems], ZhITI, 373 p.
Ivanov B. C., Kotyuk A.F., Sapritskii V.I. and Stolyarevskaya R.I. (2002) Fotometriya i radiometriya opticheskogo izlucheniya (obshchii kurs) [Photometry and radiometry of optical radiation (general course)]. Moskva, Poligraf servis, 264 p.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).