Evaluation of D2D Communications in 5G Networks

Authors

DOI:

https://doi.org/10.20535/RADAP.2020.81.21-29

Keywords:

D2D, 5G, clustering, wireless, network connectivity

Abstract

5G networks are being tested today. 5G networks are capable of improving existing services and delivering new quality of service through low latency, such as tactile internet. Existing technologies do not meet the requirements of 5G, which necessitates the development of new technologies. These include new connectivity methods that depend on the quality of the network's functioning. One of the most famous D2D communications. 5G networks use millimeter-band technologies. As the radio signal energy of the millimeter range is strongly absorbed by the environment, this range has a short communication range, so a large number of base stations must be installed in the network. But this is not always effective as their use decreases. D2D device-to-device technology is used to solve this problem. In order to ensure a high quality of network service, attention must be paid to the structure of the D2D organization. The basic structural parameters are the communication distance, the communication radius and the number of repeaters. This can be solved by selecting the relay node correctly. For this purpose it is necessary to take into account the change of the allowed data rate in the channel due to the allocation of its resources by the network node, used as a repeater. In order for the route to provide the necessary bandwidth, it is necessary to change the distance between the network nodes. This ensures network connectivity and the required level of quality of service. This is achieved by choosing the optimal algorithm that is considered in the article.

Author Biography

A. V. Bulashenko , National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

senior lecturer

References

Перелік посилань

Lei L. Operator Controlled Device-to-Device Communications in LTE-Advanced Networks / Lei L., Zhong Z., Lin C., Shen X. // IEEE Wireless Commun. - 2012. - Vol. 19, No. 3, pp. 96–104.

Asadi A. Network-assisted Outband D2D-clustering in 5G Cellular Networks /Asadi A., Mancuso V. // Theory and Practice. IEEE Transactions on Mobile Computing. - 2016. - Vol. 16, No. 8, pp. 2246–2259.

Кучерявый А. Е. Самоорганизующиеся сети и новые услуги / А. Е. Кучерявый // Электросвязь - 2009. - №1, С. 19-23.

Астахова Т. Н. Исследование моделей связности сенсорных сетей. / Т. Н. Астахова, Н. А. Верзун, В. В. Касаткин, М. О. Колбанев, А. А. Шамин //Информационно-управляющие системы. - 2019. - № 5, с. 38–50. doi:10.31799/1684-8853-2019-5-38-50.

Koucherjavyj Y., Pyattaev A., Johnsson K., Galinina O. Cellular traffic offloading onto network-assisted device-to-device connections /Koucherjavyj Y., Pyattaev A., Johnsson K., Galinina O. // IEEE Communications Magazine. - 2014. - Vol. 52, no. 4, pp. 20–31. DOI: 10.1109/MCOM.2014.6807943.

Andreev S. Analyzing Assisted Offloading of cellular sessions onto D2D links in unlicenswd bands / S. Andreev, O. Galinina, A. Pyattaev, K. Johnsson// IEEE Journal on Selected Areas in Communications. - 2015. - Vol. 33, no. 1, pp. 67–80. DOI: 10.1109/JSAC.2014.2369616.

Abdelhamied A. Ateya1, Ammar Muthanna, Andrey Koucheryavy. (2018) Multi-level edge computing framework for 5G cellular system with D2D enabled communication /Abdelhamied A. Ateya1, Ammar Muthanna, Andrey Koucheryavy // International Conference on Advanced Communications Technology(ICACT). DOI: 10.23919/ICACT.2018.8323812

Kaufman B. Spectrum sharing scheme between cellular users and ad-hoc device-to-device users /Kaufman B., Lilleberg J., Aazhang B. // IEEE Transactions on Wireless Communications. - 2013. - Vol. 12, No. 3, pp. 1038–1049.

Ometov A. Ya., Zhidanov K. A., Bezzateev S. V., Koucheryavy Y. A. (2019) On the utilization of D2D technology in cellular networks / Ometov A. Ya., Zhidanov K. A., Bezzateev S. V., Koucheryavy Y. A // St. Petersburg State Polytechnical University Journal. Computer Science. Telecommunications and Control Systems. - 2019. - Vol. 12, No. 3, pp. 58–66.

M. Jo. Device-to-devicebased heterogeneous radio access network architecture for mobile cloud computing /M. Jo, T. Maksymyuk, B. Strykhalyuk and C. Cho // IEEE Wireless Communications. - 2015. - Vol. 22, No. 3, pp. 50- 58.

Pyattaev A. 3GPP LTE Traffic Offloading onto WiFi Direct / Pyattaev A., Johnsson K., Andreev S., Koucheryavy Ye. // In Proc. of the IEEE WCNC – Workshop on Mobile Internet: Traffic Modeling, Subscriber Perception Analysis and Traffic-aware Network Design. - 2013. - pp. 135–140.

Гимадинов Р. Ф. Кластеризация в сетях 5G / Р. Ф. Гимадинов, А. С. Мутханна, А. Е. Кучерявый // Информационные технологии и телекоммуникации. - 2015. - № 1 (9), c. 35–41.

Нуриллоев И. Н. Метод оценки и обеспечения связности в беспроводной сенсорной сети / И. Н. Нуриллоев, А. И. Парамонов, А. Е. Кучерявый// Электросвязь. - 2017. - № 7, c. 39-44.

Парамонов А. И. Задачи кластеризации D2D коммуникаций в сетях пятого поколения / А.И. Парамонов, О.А. Хуссейн //VII Международная научно-техническая и научно-методическая конференция «Актуальные проблемы инфотелекоммуникаций в науке и образовании». СПбГУТ. - 2018. - c. 610-614.

Akyildiz I. F. Spatial Correlation and Mobility-Aware Traffic Modelling for Wireless Sensor Networks /Akyildiz I.F., Wang P. // IEEE/ACM Transactions on networking. - 2011. - Vol. 19, No. 6, pp. 1860-1873.

Koucheryavy A. End-to-end system structure for latency sensitive application of 5G / Koucheryavy A., Ateya A., Al-bahri M., Muthanna A. //Communications. - 2018. - Vol. 6, pp. 56-61.

Xu L. A Survey of Clustering Techniques in WSNs and Consideration of the Challenges of Applying Such to 5G IoT Scenarios /Xu L., Collier R., O’Hare G. M. // IEEE Internet of Things Journal. – 2017. – Vol. 4,No. 5, pp. 1229–1249.

Saunders S. R. Antennas and propagation for wireless communication systems. England: John Wiley & Sons Ltd, 2007.

Нуриллоев И. Н. Исследование зависимости связности сенсорной сети от способа размещения ее узлов/ И. Н. Нуриллоев, А. И. Парамонов// СПбНТОРЭС. 73-я Всероссийская научно-техническая конференция, посвященная Дню радио Труды конференции. 2018. С. 226-228.

Baidya S. S., Bhattacharyya C. K. Bahattacharya S. Finding optimal topology for coverage and connectivity using Layered Deployment Model: Acomparative study // IEEE International Conference, ICCICT 2012, Mumbai, India, October 19-20, 2012. DOI: 10.1109/ICICT.2012.6398130.

Кристофидес Н. Теория графов. Алгоритмический подход / Н. Кристофидес. - М.: Мир, 1978. - 432с.

References

Lei L., Zhong Z., Lin C. and Shen X. (2012) Operator controlled device-to-device communications in LTE-advanced networks. IEEE Wireless Communications, Vol. 19, Iss. 3, pp. 96-104. DOI: 10.1109/mwc.2012.6231164

Asadi A. and Mancuso V. (2017) Network-Assisted Outband D2D-Clustering in 5G Cellular Networks: Theory and Practice. IEEE Transactions on Mobile Computing, Vol. 16, Iss. 8, pp. 2246-2259. DOI: 10.1109/tmc.2016.2621041

Koucheryavy A. (2009) Self-organizing networks and new services. Communications, Vol. 1, pp. 19-23.

Astakhova T. N., Verzun N. A., Kasatkin V. V., Kolbanev M. O., Shamin A. A. (2019) Sensor network connectivity models. Informatsionno-upravliaiushchie sistemy [Information and Control Systems], Iss. 5, pp. 38-50. DOI: 10.31799/1684-8853-2019-5-38-50

Andreev S., Pyattaev A., Johnsson K., Galinina O. and Koucheryavy Y. (2014) Cellular traffic offloading onto network-assisted device-to-device connections. IEEE Communications Magazine, Vol. 52, Iss. 4, pp. 20-31. DOI: 10.1109/mcom.2014.6807943

Andreev S., Galinina O., Pyattaev A., Johnsson K. and Koucheryavy Y. (2015) Analyzing Assisted Offloading of Cellular User Sessions onto D2D Links in Unlicensed Bands. IEEE Journal on Selected Areas in Communications, Vol. 33, Iss. 1, pp. 67-80. DOI: 10.1109/jsac.2014.2369616

Ateya A. A., Muthanna A. and Koucheryavy A. (2018) 5G framework based on multi-level edge computing with D2D enabled communication. 2018 20th International Conference on Advanced Communication Technology (ICACT), pp. 507-512, doi: 10.23919/ICACT.2018.8323812.

Kaufman B., Lilleberg J. and Aazhang B. (2013) Spectrum Sharing Scheme Between Cellular Users and Ad-hoc Device-to-Device Users. IEEE Transactions on Wireless Communications, Vol. 12, Iss. 3, pp. 1038-1049. DOI: 10.1109/twc.2012.011513.120063

Ometov A. Ya., Zhidanov K. A., Bezzateev S. V., Koucheryavy Y. A. (2019) On the utilization of D2D technology in cellular networks. Computing, Telecommunication and Control (St. Petersburg Polytechnical University Journal. Computer Science. Telecommunication and Control Systems), Vol. 12, No. 3, pp. 58–66. DOI: 10.18721/JCSTCS.12305

Jo M., Maksymyuk T., Strykhalyuk B. and Cho C. (2015) Device-to-device-based heterogeneous radio access network architecture for mobile cloud computing. IEEE Wireless Communications, Vol. 22, Iss. 3, pp. 50-58. DOI: 10.1109/mwc.2015.7143326

Pyattaev A., Johnsson K., Andreev S. and Koucheryavy Y. (2013) 3GPP LTE traffic offloading onto WiFi Direct. 2013 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), pp. 135–140. DOI: 10.1109/wcncw.2013.6533328

Gimadinov R. F., Muthanna A. S., Koucheryavy A. E. (2015) Clustering in 5G Networks. Informacionnye tehnologii i telekommunikacii, Vol. 1 (9), pp. 35–41.

Nurilloev I. N., Paramonov A. I., Kucheryavy A. E. (2017) A method for evaluating and providing connectivity in a wireless sensor network. Communications, Vol. 7, pp. 39-44.

Paramonov A. I., Hussein O. A. (2018) Tasks of Clustering D2d Communications in the Networks of the Fifth Generation. VII International Scientific-Technical and Scientific-Methodological Conference "Actualproblems of infotelecommunications in science and education". Bonch-Bruevich Saint-Petersburg State University of Telecommunications, St. Petersburg, pp. 610-614.

Wang P. and Akyildiz I. F. (2011) Spatial Correlation and Mobility-Aware Traffic Modeling for Wireless Sensor Networks. IEEE/ACM Transactions on Networking, Vol. 19, Iss. 6, pp. 1860-1873. DOI: 10.1109/tnet.2011.2162340

Koucheryavy A., Ateya A., Al-bahri M., Muthanna A. (2018) End-to-end system structure for latency sensitive application of 5G. Communications, Vol. 6, pp. 56-61.

Xu L., Collier R. and O’Hare G. M. P. (2017) A Survey of Clustering Techniques in WSNs and Consideration of the Challenges of Applying Such to 5G IoT Scenarios. IEEE Internet of Things Journal, Vol. 4, Iss. 5, pp. 1229-1249. DOI: 10.1109/jiot.2017.2726014

Saunders S. R. (2007) Antennas and propagation for wireless communication systems. England: John Wiley & Sons Ltd.

Nurilloev I. N., Paramonov A. I. (2018) Investigation of the dependence of the connectivity of the sensor network on the method of placing its nodes. 73rd All-Russian Scientific and Technical Conference dedicated to Radio Day Conference proceedings, pp. 226-228.

Baidya S. S., Bhattacharyya C. K. and Bhattacharyya S. (2012) Finding optimal topology for coverage and connectivity using Layered Deployment Model: A comparative study. 2012 International Conference on Communication, Information & Computing Technology (ICCICT), pp. 1-6. DOI: 10.1109/iccict.2012.6398130

Christifides N. Graph theory. Algorithmic approach/ N. Christifides. – M.: Mir, 1978. – 432p.

Published

2020-06-30

How to Cite

Булашенко, А. В. . (2020) “Evaluation of D2D Communications in 5G Networks”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, (81), pp. 21-29. doi: 10.20535/RADAP.2020.81.21-29.

Issue

Section

Telecommunication, navigation, radar systems, radiooptics and electroacoustics