Сomparative Analysis of Polynomial Maximization and Maximum Likelihood Estimates for Data with Exponential Power Distribution
DOI:
https://doi.org/10.20535/RADAP.2020.82.44-51Keywords:
exponential power distribution, stochastic polynomials, high-order statistics, parameter estimationAbstract
The work is devoted to the estimate accuracy comparative analysis of the experimental data parameters with exponential power distribution (EPD) using the classical Maximum Likelihood Estimation (MLE) and the original Polynomial Maximization Method (PMM). In contrast to the parametric approach of MLE, which uses the description in the form of probability density distribution, PMM is based on a partial description in the of higher-order statistics form and the mathematical apparatus of Kunchenko's stochastic polynomials. An algorithm for finding PMM estimates using 3rd order stochastic polynomials is presented. Analytical expressions allowing to determine the variance of PMM-estimates of the asymptotic case parameters and EPD parameters with a priori information are obtained. It is shown that the relative theoretical estimates accuracy of different methods significantly depends on the EPD shape parameter and matches only for a separate case of Gaussian distribution. The effectiveness of different approaches (including valuation of mean values estimates) both with and without a priori information on EPD properties was investigated by repeated statistical tests (through Monte Carlo Method). The greatest efficiency areas for each of methods depending on EPD shape parameter and sample data volume are constructed.
References
Bezuglov D.A., Andrjushhenko I.V., Shvidchenko S.A. Informacionnaja tehnologija identifikacii zakona raspredelenija na baze kumuljantnogo metoda analiza rezul'tatov izmerenij [Information technology for identification of the distribution law based on the cumulant method of results measurement analysis]. Informacionnye sistemy i tehnologii. Teorija i praktika: cbornik nauchnyh trudov [Information systems and technologies. Theory and Practice: Collection of Scientific Papers], Shahty, 2011, pp. 186-194.
Krasilnikov A. (2019) Family of Subbotin Distributions and its Classification. Èlektronnoe modelirovanie, Vol. 41, Iss. 3, pp. 15-32. DOI: 10.15407/emodel.41.03.015
Novitskii P. V., Zograf I. A. Otsenka pogreshnostei rezul’tatov izmerenii [Estimation of errors of measurement results]. Moscow, Energoatomizdat Publ., 1991, 304 p.
Subbotin M. T. On the law of frequency of error. Mat. Sb., 1923, vol. 31, no. 2, pp. 296-301.
Gui W. (2013) Statistical Inferences and Applications of the Half Exponential Power Distribution. Journal of Quality and Reliability Engineering, pp. 1-9. DOI: 10.1155/2013/219473.
Hassan M. Y., Hijazi R. H. (2010) А bimodal exponential power distribution. Pak. J. Statist , vol. 26, no. 2, pp. 379–396.
Maugey T., Gauthier J., Pesquet-Popescu B. and Guillemot C. (2010) Using an exponential power model forwyner ziv video coding. 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2338-2341. DOI: 10.1109/icassp.2010.5496065.
Saatci E. and Akan A. (2010) Respiratory parameter estimation in non-invasive ventilation based on generalized Gaussian noise models. Signal Processing, Vol. 90, Iss. 2, pp. 480-489. DOI: 10.1016/j.sigpro.2009.07.015.
Chan J., Choy B., Walker S. On the Estimation of the Shape Parameter of a Symmetric Distribution. Journal of Data Science, 2020, vol. 18, no. 1, pp. 78-100.doi: 10.6339/JDS.202001_18(1).0004.
Komunjer I. (2007) Asymmetric power distribution: Theory and applications to risk measurement. Journal of Applied Econometrics, Vol. 22, Iss. 5, pp. 891-921. DOI: 10.1002/jae.961.
Olosunde A. A., Soyinka A. T. (2019) Interval Estimation for Symmetric and Asymmetric Exponential Power Distribution Parameters. Journal of the Iranian Statistical Society, Vol. 18, Iss. 1, pp. 237-252. DOI: 10.29252/jirss.18.1.237.
Dominguez-Molina J. A., González-Farías G., Rodríguez-Dagnino R. M. (2003) A practical procedure to estimate the shape parameter in the generalized Gaussian distribution. ResearchGate.
Olosunde A. A. (2013) On Exponential Power Distribution and Poultry Feeds Data: a Case Study. Journal of The Iranian Statistical Society, vol. 12, no. 2, pp. 253-270.
Duda J. (2020) Adaptive exponential power distribution with moving estimator for nonstationary time series. ResearchGate, 6 p. doi: 10.13140/RG.2.2.26797.64483.
Zakharov I. P., Shtefan N. V. (2002) Opredeleniej effektivnyh ocenok centra raspredelenija pri statisticheskoj obrabotke rezul'tatov nabljudenij [Definition of effective distribution center value at statistical processing of measurement observations]. Radioelektronika ta informatyka - Radioelectronics and informatics , vol. 3, no. 20, pp. 97-99.
Warsza Z. L., Galovska M. (2009) About the best measurand estimators of trapezoidal probability distributions. Przeglad Elektrotechniczny, vol. 85, no. 5, pp.86–91.
Mineo A. M., Ruggieri M. (2005) A Software Tool for the Exponential Power Distribution: The normalp Package. Journal of Statistical Software, vol. 12, iss. 4, pp. 1-24. doi: 10.18637/jss.v012.i04.
Kunchenko Yu. P. (2002) Polynomial parameter estimations of close to Gaussian random variables . Aachen, Shaker Verlag, 396 p.
Zabolotnii S. V., Chepynoha A. V., Bondarenko Y. Y. and Rud M. P. (2018) Polynomial parameter estimation of exponential power distribution data. Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, Iss. 75, pp. 40-47. DOI: 10.20535/radap.2018.75.40-47.
Warsza Z. L. and Zabolotnii S. W. (2017) A Polynomial Estimation of Measurand Parameters for Samples of Non-Gaussian Symmetrically Distributed Data. Automation 2017, pp. 468-480. DOI: 10.1007/978-3-319-54042-9_45.
Warsza Z. L., Zabolotnii S. W. (2017) Uncertainty of measuring data with trapeze distribution evaluated by the polynomial maximization method. Przemysl Chemiczny, no. 12, pp. 68–71. doi: 10.15199/62.2017.12.6.
Zabolotnii S. V., Kucheruk V. Yu., Warsza Z. L. (2018) Polynomial Estimates of Measurand Parameters for Data from Bimodal Mixtures of Exponential Distributions. Bulletin of the Karaganda University. Physics Series., vol. 2, no. 90, pp. 71-80.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 С. В. Заболотній, А. В. Чепинога, А. M. Чорній, А. B. Гончаров;
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).