Коаксіальний сенсор відкритого типу. Інтегральне рівняння електричного поля в площині апертури

Автор(и)

  • Чан Лю Хэйлунзянский Бауи аграрный университет
  • О. Ю. Панченко Харківський національний університет радіоелектроніки
  • М. І. Сліпченко Харківський національний університет радіоелектроніки http://orcid.org/0000-0002-3037-8763
  • О. Б. Зайченко Харківський національний університет радіоелектроніки

DOI:

https://doi.org/10.20535/RADAP.2017.69.11-16

Ключові слова:

функції Беселя, граничні умови, власні функції, функція Гріна

Анотація

В роботі показана методика отримання інтегрального рівняння поля в площині апертури сенсора, що дозволяє строго розв’язати задачу визначення параметрів сенсора, або при використанні наближення заданого поля обчислити їх з високим ступенем точності. Це є основою подальшого аналізу параметрів сенсорів на якісному рівне, а також їх практичного розрахунку. Показано критерії використання наближення і можливості норміровки задачі.

Біографії авторів

Чан Лю, Хэйлунзянский Бауи аграрный университет

Лю Чан, PhD

О. Ю. Панченко, Харківський національний університет радіоелектроніки

Панченко О. Ю., д.ф.-м.н., проф.

М. І. Сліпченко, Харківський національний університет радіоелектроніки

Сліпченко М. І., докт. фіз.-мат. наук, проф.

О. Б. Зайченко, Харківський національний університет радіоелектроніки

Зайченко О. Б., к. т. н.

Посилання

Перелік посилань

Митра Р. Вычислительные методы в электродинамике / Р. Митра. - М.: Издательство Мир. - 1977. - 485с.

Van Bladel J. G. Electromagnetic fields. - John Wiley Sons. - 2007. - Vol. 19. - 1149 p.

Детинко M. B. Электродинамическая модель СВЧ-резонатора с кольцевым измерительным отверстием, нагруженного на многослойную полупроводниковую структуру / M. B. Детинко, C. A. Хоптяр // Известия вузов. Физика. - 1993. - №9. - С. 53–58.

Гордиенко Ю. Е. Приближение заданного поля в задачах определения характеристик резонаторных СВЧ - датчиков апертурного типа / Ю. Е. Гордиенко, А. Ю. Панченко, Р. С. Фар // Радиотехника: Всеукраинский межведомственный научно-технический сборник. - 1998. - Вып. 107. - С. 93–103.

Hyde M. W. Nondestructive characterization of PEC-backed materials using the combined measurements of a rectangular waveguide and coaxial probe / M. W. Hyde, A.E. Bogle, M. J. Havrilla // IEEE Microw. Wireless Compon. Lett. - 2014. - Vol. 24, No. 11. - pp. 808–810.

Hyde M. W. Nondestructive electromagnetic material characterization using a dual waveguide probe: A full wave solution / M. W. Hyde, J. W.Stewart, M. J.Havrilla , W. P. Baker, E. J. Rothwell , D. P.Nyquist // Radio Science. -2009. -Vol. 44, No. 3. - pp.1–13.

Panchenko A.Yu. Modeling a small aperture resonator type microwave meter of substance parameters / A. Yu. Panchenko // Telecommunications and Radio Engineering. -1998. - No.52 (8). - pp. 118–121.

Huang R. Analysis of open-ended coaxial probes by using a two-dimensional finite-difference frequency-domain method / R.Huang , D. Zhang // IEEE Trans. Instrum. Meas. - 2008. -Vol. 57, No. 5. - pp. 931–939.

Иванов В. К., Силин А. О., Стадник А. М. Определение комплексной диэлектрической проницаемости жидкостей коаксиальными зондами с использованием подложек из метаматериала / В. К. Иванов, А. О. Силин, А. М. Стадник // Вісник Харківського національного університету ім. Каразіна. Серія Радіофізика та електроніка. - 2011. -Т. 2(16), №1. - С. 91-98.

Hosseini M. H. Wideband Nondestructive Measurement of Complex Permittivity and Permeability Using Coupled Coaxial Probes / M. H. Hosseini, H. Heidar, M. H. Shams // IEEE Transactions on Instrumentation and Measurement. - 2017. - Vol. 66, No.1, pp. 148–157.

Hyde M. W. Nondestructive Determination of the Permittivity Tensor of a Uniaxial Material Using a Two-Port Clamped Coaxial Probe / M. W. Hyde, M. J. Havrilla, A. E. Bogle // IEEE Trans. Microwave Theory and Technique. -2016. - Vol.64, No.1. - pp. 239–246.

Cenanovic A. Measurement setup for non-destructive complex permittivity determination of solid materials using two coupled coaxial probes / A. Cenanovic, M. Schramm, L. Schmidt // IEEE MTT-S Int. Microw. Symp. Dig. -2011. -pp. 1–4.

Yee L. K.(2015) Modelling of microwave elliptical and conical tip sensors for in vivo dielectric measurements / L. K. Yee, N. W. Hau, C. B. Kuan, P. Y. Nan, L. H. Sheng, L. E. Hock // IEEE InternationalRF and Microwave Conference (RFM). - 2015. - pp. 222–226.

Abdelgwad A. H. Measured Dielectric permittivity of chlorinated drinking water in the microwave frequency range / A. H. Abdelgwad ,T. M. Said // IEEE 15 Mediterrenial Microwave Symposium (MMS). - 2014. -pp. 1–4.

Wagner N. Numerical 3-D FEM and experimental analysis of the open-ended coaxial line technique for microwave dielectric spectroscopy on soil / N. Wagner , M. Schwing , A. Scheuermann // IEEE Transactions on Geoscience and Remote Sensing. -2014. - Vol. 52, No. 2. - pp. 880-893.

Hyde. M. W. Broadband, nondestructive microwave sensor for characterizing magnetic sheet materials / M. W.Hyde , M. J. Havrilla // IEEE Sensors J. -2016. -Vol. 16, No. 12. - pp. 4740–4748.

Kempin M. Modified waveguide flange for evaluation of stratified composites / M.Kempin, M.Ghasr,J. Case, R.Zoughi // IEEE Trans. Instrum. Meas. -2014. - Vol. 63, No. 6. - pp. 1524–1534.

Думин А. Н. Дифракция нестационарной ТЕМ-волны на открытом конце коаксиального волновода / А. Н. Думин, В. А.Катрич , Н. Н.Колчигин , С. Н.Пивненко , О. А.Третьяков // Радиофизика и радиоастрономия. -2000. -Т. 5, №1. - С. 55–67.

Boybay M. S. Open-ended coaxial line probes with negative permittivity materials / M. S. Boybay , O. M. Ramahi // IEEE Trans. Antennas Propag. - 2011. - Vol. 59, No. 5. - pp. 1765–1769.

Maftooli H. Output signal prediction of an open-ended coaxial probe when scanning arbitrary-shape surface cracks in metals / H. Maftooli, H. R.Karami , S. H. H. Sadeghi, R. Moini // IEEE Trans. Instrum. Meas. -2012. - Vol. 61, No. 9. - pp. 2384–2391.

Wen Mingming. Evaluation of influence of microwave radiation sensor in the form of an open end of the coaxial line on its metrological characteristics / Mingming Wen, Ch. Liu, A.Yu. Panchenko, N.I.Slipchenko // Telecommunications and Radio Engineering. -2015. -No.74(15). - pp. 1355–1366.

Гордиенко Ю. Е. Резонаторные измерительные преобразователи в диагностике микрослоистых структур. Радиотехника: Всеукраинский межведомственный научно-технический сборник. -1996. -Вып. 100. - С. 253–260. Lu Ch. An integral equation for the field distribution within the aperture plane of the coaxial sensor/ Ch. Lu, A. Yu. Panchenko , M. I. Slipchenko // Telecommunications and Radio Engineering - 2016. -No.75(7). - pp. 587–594.

Гордиенко Ю. Е. Вычисление комплексных частот СВЧ резонаторных датчиков апертурного типа / Ю. Е.Гордиенко , A. A. Рябухин // Радиоэлектроника и информатика. - 2001. -№2. - С. 4–7.

Panchenko A. Yu. On the development of a practical technique of theoretical calibration of resonant sensors for near-field microwave diagnostics / A.Yu. Panchenko, N. I. Slipchenko, A. N. Borodkina // Telecommunication and Radio Engineering. -2014. -No.73(15). - pp. 1397–1407.

Панченко Б. А. Тензорные функции Грина уравнений Максвелла для цилиндрических областей / Б. А. Панченко // Радиотехника: Всеукраинский межведомственный научно-технический сборник. -1970. - Вып. 15 - С. 82–91.

Tai C. T. Dyadic Green's functions for a coaxial line / C. T. Tai // IEEE Trans. of Antennas and Propagation. -1983. - Vol. 48, No. 2. - pp. 355–358.

References

Mittra R. (1973) Computer Techniques for Electromagnetics, Pergamon Press, 416 p.

Van Bladel J. G.(2007) Electromagnetic fields, John Wiley Sons., Vol. 19, 1149 p.

Detinko M. B. and Hoptyar C. A. (1993) Elektrodinamicheskaya model SVCH-rezonatora s koltsevyim izmeritelnyim otverstiem, nagrujennogo na mnogosloynuyu poluprovodnikovuyu strukturu [Electrodynamic model of microwave cavity with a circular orifice, which is loaded on the multilayer semiconductor structure], Izvestiya vuzov. Fizika, No.9, pp. 53–58.

Gordienko Yu. E., Panchenko A. Yu. and Far R. S. (1998) Priblijenie zadannogo polya v zadachah opredeleniya harakteristik rezonatornyih SVCH- datchikov aperturnogo tipa [Approximation of a preset field in the problems of determining the characteristics of the resonator of the microwave sensors aperture type], Radiotehnika: Vseukrainskiy mezhvedomstvennyiy nauchno-tehnicheskiy sbornik, Vol. 107, pp. 93–103.

Hyde M. W. and Bogle A. E. (2014) Nondestructive characterization of PEC-backed materials using the combined measurements of a rectangular waveguide and coaxial probe. IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 11, pp. 808–810. DOI: 10.1109/LMWC.2014.2348496

Hyde M. W. and Stewart (2009) Nondestructive electromagnetic material characterization using a dual waveguide probe: A full wave solution, Radio Science, Vol., Issue 3. pp. 1-13. DOI: 10.1029/2008RS003937

Panchenko A.Yu. (1998) Modeling a small aperture resonator type microwave meter of substance parameters, textit{Telecommunications and Radio Engineering}, No. 52 (8), pp. 118–121.

Huang R. and Zhang D. (2008) {textit{Analysis of open-ended coaxial probes by using a two-dimensional finite-difference frequency-domain method. IEEE Trans. Instrum. Meas., Vol. 57, Iss. 5 pp. 931-939. DOI: 10.1109/TIM.2007.913830

Ivanov V. K., Silin A. O. and Stadnik A. M. (2011) Opredelenie kompleksnoy dielektricheskoy pronitsaemosti jidkostey koaksialnyimi zondami s ispolzovaniem podlojek iz metamateriala [Determination of complex permittivity of liquids coaxial probes using metamaterial substrates from], Vіsnik Harkіvskogo natsіonalnogo unіversitetu іm. Karazіna. Serіya Radіofіzika ta elektronіk, Vol. 2(16), No.1, pp. 91-98.

Hosseini M. H. and Heidar H. (2017) Wideband Nondestructive Measurement of Complex Permittivity and Permeability Using Coupled Coaxial Probes, IEEE Transactions on Instrumentation and Measurement, Vol. 66, No.1, pp. 148–157. DOI: 10.1109/TIM.2016.2619958

Hyde M. W. and Havrilla M. J. (2016) Nondestructive Determination of the Permittivity Tensor of a Uniaxial Material Using a Two-Port Clamped Coaxial Probe IEEE Trans. Microwave Theory and Technique, Vol.64, No.1, pp. 239–246. DOI: 10.1109/TMTT.2015.2502242

Cenanovic A. and Schramm M. (2011) Measurement setup for non-destructive complex permittivity determination of solid materials using two coupled coaxial probes, IEEE MTT-S Int. Microw. Symp. Dig., pp. 1–4. DOI: 10.1109/MWSYM.2011.5972838

Yee L. K.and Hau N. W. (2015) Modelling of microwave elliptical and conical tip sensors for in vivo dielectric measurements, IEEE International RF and Microwave Conference (RFM), pp. 222–226.DOI: 10.1109/RFM.2015.7587749

Abdelgwad A. H. and Said T. M. (2014) Measured Dielectric permittivity of chlorinated drinking water in the microwave frequency range, IEEE 15 Mediterranean Microwave Symposium (MMS), pp. 1–4. DOI: 10.1109/MMS.2015.7375497

Wagner N. (2014) Numerical 3-D FEM and experimental analysis of the open-ended coaxial line technique for microwave dielectric spectroscopy on soil, IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, No. 2, pp. 880-893. DOI: 10.1109/TGRS.2013.2245138

Hyde. M. W. and Havrilla M. J. (2016) Broadband, nondestructive microwave sensor for characterizing magnetic sheet materials, IEEE Sensors J., Vol. 16, No. 12, pp. 4740–4748. DOI: 10.1109/JSEN.2016.2548560

Kempin M.and Ghasr M. (2014) Modified waveguide flange for evaluation of stratified composites, IEEE Trans. Instrum. Meas., Vol. 63, No. 6, pp. 1524–1534. DOI: 10.1109/TIM.2013.2291952

Dumin A. N., Katrich V. A., Kolchigin N. N., Pivnenko S. N. and Tretyakov O. A. (2000) Difraktsiya nestatsionarnoy TEM-volnyi na otkryitom kontse koaksialnogo volnovoda [Nonstationary diffraction of THE wave at the open end of the coaxial waveguide], Radiofizika i radioastronomiya, Vol. 5, No.1, pp. 55–67.

Boybay M. S. and Ramahi O. M. (2011) Open-ended coaxial line probes with negative permittivity materials, IEEE Trans. Antennas Propag, Vol. 59, No. 5, pp. 1765–1769. DOI: 10.1109/TAP.2011.2123056

(2012) Maftooli H. Output signal prediction of an open-ended coaxial probe when scanning arbitrary-shape surface cracks in metals, IEEE Trans. Instrum. Meas., Vol. 61, No. 9, pp. 2384–2391. DOI: 10.1109/TIM.2012.2199193

Wen Mingming and Liu Ch.(2015) Evaluation of influence of microwave radiation sensor in the form of an open end of the coaxial line on its metrological characteristics, Telecommunications and Radio Engineering, No.74(15), pp. 1355–1366. DOI: 10.1615/TelecomRadEng.v74.i15.40

Gordienko Yu. E. (1996) Rezonatornyie izmeritelnyie preobrazovateli v diagnostike mikrosloistyih struktur [The resonator transducers in the diagnosis microsloth structures], Radiotehnika: Vseukrainskiy mezhvedomstvennyiy nauchno-tehnicheskiy sbornik, Vol. 100, pp. 253–260.

Lu Ch. and Panchenko A. Yu. (2015) An integral equation for the field distribution within the aperture plane of the coaxial sensor, Telecommunications and Radio Engineering, No.75(7), pp. 587–594. DOI: 10.1615/TelecomRadEng.v75.i7.20

Gordienko Yu. E. and Ryabuhin A. A. (2001) Vyichislenie kompleksnyih chastot SVCH rezonatornyih datchikov aperturnogo tipa [The calculation of the complex frequency of the microwave resonator sensors aperture type, Radioelektronika i informatika, Iss. 2, pp. 4–7.

Panchenko A. Yu. (2014) On the development of a practical technique of theoretical calibration of resonant sensors for near-field microwave diagnostics, Telecommunications and Radio Engineering, No. 73(15), pp. 1397–1407. DOI: 10.1615/TelecomRadEng.v73.i15.80

Panchenko B. A. (1970) Tenzornyie funktsii Grina uravneniy Maksvella dlya tsilindricheskih oblastey [Tensor Green's functions of Maxwell's equations for cylindrical regions]. Radiotehnika: Vseukrainskiy mezhvedomstvennyiy nauchno-tehnicheskiy sbornik, Vol. 15, pp. 82-91.

Tai C. T. (1983) Dyadic Green's functions for a coaxial line, IEEE Trans. of Antennas and Propagation, Vol. 48, No. 2, pp. 355-358. DOI: 10.1109/TAP.1983.1143029

##submission.downloads##

Опубліковано

2017-07-01

Як цитувати

Лю, Ч., Панченко, О. Ю., Сліпченко, М. І. і Зайченко, О. Б. (2017) «Коаксіальний сенсор відкритого типу. Інтегральне рівняння електричного поля в площині апертури», Вісник НТУУ "КПІ". Серія Радіотехніка, Радіоапаратобудування, 0(69), с. 11-16. doi: 10.20535/RADAP.2017.69.11-16.

Номер

Розділ

Електродинаміка, пристрої НВЧ діапазону та антенна техніка