Power distribution in the electromagnetic field. Portions of energy flows. portions energy

Authors

DOI:

https://doi.org/10.20535/RADAP.2017.69.17-22

Keywords:

phase velocity of the energy flux density, phase velocity of the energy density, the concept of a portion of the energy flux density, portions of the energy density

Abstract

New concepts of the phase velocity of the energy flux density, the phase velocity of the energy density, the concept of a portion of the energy flux density, portions of the energy density are introduced. The entered values shed light on the energy distribution of the electromagnetic field of a harmonic wave in space, the nature of an electromagnetic wave, the process of energy transfer by an electromagnetic wave.
The energy of an electromagnetic wave is propagated in portions (quanta, in a non-modern sense of the word). It is shown that the phase velocity is a physically understandable quantity - the speed of propagation of portions of the energy flow, energy portions. The process of energy transfer is a wave process moving with a velocity equal to the phase velocity of the field components, the Poynting vector, the energy and energy density. The flow of the Poynting vector does not arise from zero. One serving leaves (shifts in the direction of spreading), another one comes into its place.
The continuity of the energy flow should be interpreted as the continuity of the flow of portions of energy, the continuity of the flow of mean value.
The reduced results, simple from the mathematical and physical points of view, become more complicated when considering more complicated processes, for example, waves excited by a Hertz dipole.

Author Biography

V. I. Naidenko, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute

Naidenko V. I.

References

Перелік посилань

Фейнман Р. Фейнмановские лекции по физике / Р. Фейнман, Р. Лейтон, М. Сэндс. - Вып. 6. - 343 с.

Yaghjian A. D. Classical Power and Energy Relations for Macroscopic Dipolar Continua Derived from the Microscopic Maxwell Equations / A. D. Yaghjian // Progress іn Electromagnetic Research B. - 2016. - Vol. 71, 1-37.

Gustafsson M. Stored electromagnetic energy expressed in the fields, currents and input impedance / M. Gustafsson // IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting ; 19-24 July 2015. - Vancouver, Canada.

Харченко К. П. «Электромагнитная волна», лучистая энергия - поток реальных фотонов / К.П. Харченко, В.Н. Сухарев. - М. : КомКнига, 2005. - 128 с.

Ландау Л. Д. Теоретическая физика. Т. VIII. Электродинамика сплошных сред. 4-е изд. / Л.Д. Ландау, Е.М. Лифшиц. - М. : ФИЗМАТЛИТ, 2005. - 656 с.

Борн М. Основы оптики / М. Борн, Э. Вольф. - М. : Наука, 1970. - 856 с.

Каценеленбаум Б. З. Высокочастотная электродинамика / Б.З. Каценеленбаум. - М. : Наука, 1966. - 240 с.

Stratton J. A. Electromagnetic Theory / J. A. Stratton. -A Wiley-IEEE Press Publication, 2007. - 615 p.

Naidenko V. I. Active and Reactive Energy of Electromagnetic Waves / V. I. Naidenko // URSI GASS. - 2017, Montreal, Canada.

Naidenko V. I. Evolution of Electromagnetic Waves Radiated by a Hertzian Dipole / V.I. Naidenko // Proc. VIII International Conference on Antenna Theory and Techniques. - 2011. - pp. 63-68.

Вайнштейн Л. А. Электромагнитные волны, 2-е изд. / Л. А. Вайнштейн. - М. : Радио и связь, 1988. - 440 с.

Бессонов Л. А. Теоретические основы электротехники. Электромагнитное поле / Л. А. Бессонов. - М. : Высшая шк., 1986. - 263 с.

Горелик Г. С. Колебания и волны / Г. С. Горелик. - М. : ГИФМЛ, 1959. - 572 с.

Вайнштейн Л. А. Лекции по сверхвысокочастотной электронике / Л.А. Вайнштейн, В.А. Солнцев. - М. : Сов. Радио, 1973. - 400с.

Линейные ускорители ионов. Под ред. Б. П. Мурина. Т. 1, Проблемы и теория. 260 с. Т. 2, Основные системы. - М. : Атомиздат, 1978. - 320 с.

Семенов А. А. Теория электромагнитных волн / А. А. Семенов. - М. : Изд-во Моск. Ун-та, 1968. - 319с.

Schantz H. G. Electromagnetic Energy Around Hertzian Dipoles / H. G. Schantz // IEEE Antennas and Propagation Magazine. - 2001. - Vol. 43, No 2. - pp. 50-62.

References

Feinman R., Leiton R. and Sends M. (1963) Feinmanovskie lektsii po fizike [Feynman lectures on physics], Vol. 6, 343 p.

Yaghjian A. D. (2016) Classical Power and Energy Relations for Macroscopic Dipolar Continua Derived from the Microscopic Maxwell Equations, Progress іn Electromagnetic Research B, Vol. 71, pp. 1-37. DOI: 10.2528/pierb16081901

Gustafsson M. and Jonsson B. L. G. (2015) Stored electromagnetic energy expressed in the fields, currents and input impedance, IEEE Transactions on Antennas and Propagation. Vol. 63, Iss. 1, pp. 24-249. DOI: 10.1109/TAP.2014.2368111

Kharchenko K. P. and Sukharev V. N. (2005) "Elektromagnitnaya volna", luchistaya energiya - potok real'nykh fotonov ["Electromagnetic wave", the radiant energy is the flow of real photons], Moskow, KomKniga, 128 p.

Landau L. D. and Lifshits E. M. (2005) Teoreticheskaya fizika. Vol. VIII Elektrodinamika sploshnykh sred [Theoretical physics. Vol. 8 Electrodynamics of continuous media]. 4-th ed., Moskow, FIZMATLIT, 656 p.

Born M. and Vol'f E. (1970) Osnovy optiki [Fundamentals of optics], Moskow, Nauka, 856 p.

Katsenelenbaum B. Z. (1966) Vysokochastotnaya elektrodinamika [High frequency electrodynamics]. Moskow, Nauka, 240 p.

Stratton J. A. (2007) Electromagnetic Theory, A Wiley-IEEE Press Publication, 615 p. DOI: 10.1002/9781119134640.index

Naidenko V. I. (2017) Active and Reactive Energy of Electromagnetic Waves, URSI GASS, Montreal, Canada.

Naidenko V. I. (2011) Evolution of Electromagnetic Waves Radiated by a Hertzian Dipole, VIII International Conference on Antenna Theory and Techniques, pp. 63-68. DOI: 10.1109/icatt.2011.6170714

Vainshtein L. A. (1988) Elektromagnitnye volny, 2-e izd. [Electromagnetic waves], Moskow, Radio i svyaz', 440 p.

Bessonov L. A. (1986) Teoreticheskie osnovy elektrotekhniki. Elektromagnitnoe pole [Theoretical fundamentals of electrical engineering. Electromagnetic field], Moskow, Vysshaya shkola, 263 p.

Gorelik G. S. (1959) Kolebaniya i volny [Oscillations and waves], Moskow, GIFML, 572 p.

Vainshtein L. A. and Solntsev V. A. (1973) Lektsii po sverkhvysokochastotnoi elektronike [Lectures on ultrahigh-frequency electronics], Moskow, Sov. Radio, 400 p.

Murin B. P. ed. (1978) Lineinye uskoriteli ionov [Linear ion accelerators], Moskow, Atomizdat, 320 p.

Semenov A. A. (1968) Teoriya elektromagnitnykh voln [The theory of electromagnetic waves], Moskow, Izd-vo Mosk. Un-ta, 319 p.

Schantz H. G. (2001) Electromagnetic Energy Around Hertzian Dipoles, IEEE Antennas and Propagation Magazine, Vol. 43, No 2, pp. 50-62. DOI: 10.1109/74.924604

Published

2017-07-01

How to Cite

Найденко, В. І. (2017) “Power distribution in the electromagnetic field. Portions of energy flows. portions energy”, Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, 0(69), pp. 17-22. doi: 10.20535/RADAP.2017.69.17-22.

Issue

Section

Electrodynamics. Microwave devices. Antennas