Microwave Three-Dimensional Capacitive Stubs
DOI:
https://doi.org/10.20535/RADAP.2019.77.30-35Keywords:
low pass filter, capacitive stub, three-dimensional model, one-dimensional model, stub’s T-junctionAbstract
Introduction. Microstrip filters are widely used in a variety of radio-electronic systems, including telecommunications. Low frequency filters (LPFs) are constructed on the basis of quasi-lumped inductances and capacitances. Quasi-lumped capacitances are performed as microstrip sections with a wide signal conductor or open stubs. Traditional quasi-lumped elements are two-dimensional (2D). Three-dimensional (3D) quasi-lumped elements have 1.5 to 4 times greater reactivity values. The purpose of the paper is to analyze 3D-stubs charateristics.
Capacitive 3D-stub transfer characteristic. The 3D-stub is a deaf metalized hole. In the presented paper hole is a square with rounded corners. Dependencies of 1D-model parameters of 3D-stub are shown. From a comparison of 3D- and 1D-transfer characteristics of the 3D-stub it is shown that the 3D-stub in the first approximation can be simulated by a 1D-model in the form of a long line stub.
Influence of parasitic inductance on stub notch frequency. For a 1D-model, the stub notch frequency is determined by a quarter-wave condition of it’s length. Stub’s T-junction brings in parasitic reactivities. The parasitic inductance and stub form a series oscillatory circuit. The resonance frequency of this circuit is equal to stub notch frequency. Since traditionally this inductance is negative, the notch frequency increases and stub and LPF transfer characteristics slope decreases. In order to reduce the inductance influence for stub and line contact it is suggested to use a small contact pad.
3D-stub notch frequency and parasitic inductance dependences. The dependences of the notch frequency and parasitic inductance on the 3D-stub heterogeneity depth and contact pad length are analyzed. According to simulation results for a variant with a contact pad inductance values can be not only negative, but also positive. If inductance is positive, notch frequency is less than according to quarter-wave condition. In this case, stub and LPF transfer characteristics slope is higher compared to quarter-wave condition. Discussion of the results. With an increase of the 3D-stub heterogeneity depth from 0.5 to 1 mm, its wave impedance is less in 1.4 ... 3.5 times compared to 2D-stub, and the capacity is greater in 1.6 ... 4.1 times. Contact pad between the stub and line allows to optimize the stub parameters from the condition of the required transfer characteristics slope.
Conclusion. 3D-stub has significantly better parameters than 2D-stub. Since the LPF requires the specified capacitance values, depending on the 3D-stub inhomogeneity depth, the area of the 3D-stub is less than 1.6 ... 4.1 times. The 1D-model of the 3D-stub allows to characterize the stub by equivalent wave impedance and relative dielectric permittivity and can be used as the first approximation model for the design and simulating of microstrip LPFs based on capacitive 3D-stubs.
References
Gupta K. and Sahayam N. (2018) A review on microstrip filters for the application in communication systems. IRJET, Vol. 5, No 12, pp. 709-717.
Edwards T.C. and Steer M.B. (2016) Foundations for Microstrip Circuit Design, Wiley. DOI: 10.1002/9781118936160
Jubril A. and Nyitamen D. S. (2018) 2GHz microstrip low pass filter design with open-circuited stub. IOSR-Journal of Electronics and Communication Engineering, Vol. 13, No 2, pp. 1-9. DOI: 10.9790/2834-1302020109
Nelin E.A., Zinher Y.L. and Popsui V.I. (2018) Low-Pass Filters Based on Crystal-Like Inhomogeneities. Radioelectronics and Communications Systems, Vol. 61, Iss. 5, pp. 214-221. DOI: 10.3103/s0735272718050059
Hong J.-S. (2011) Microstrip Filters for RF/Microwave Applications, Wiley. DOI:10.1002/9780470937297
Gard R., Bahl I. and Bozzi M. (2013) Microstrip Lines and Slotlines, Artech House, 590 p.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).