Optimization of Cartesian Feedback Loops for Wideband SDR Transmitters in 5G Mobile Networks

Authors

DOI:

https://doi.org/10.20535/RADAP.2025.100.%25p

Keywords:

5G, software-defined radio, error vector magnitude, Cartesian feedback, digital predistortion, quasi-cyclic LDPC, modulation error ratio, orthogonal frequency-division multiplexing, internet of things

Abstract

The article investigates the application of the Cartesian Feedback (CF) loop for distortion compensation in wideband Software-defined radio (SDR) systems, specifically in the context of 5G mobile networks, which incorporate technologies such as Orthogonal Frequency-Division Multiplexing (OFDM) and support applications like the Internet of Things (IoT). The purpose of the research is to minimize nonlinear distortions, such as I/Q-imbalance and phase noise, through a combined analog-digital compensation approach that includes Digital Predistortion (DPD) and the use of a CF loop. In addition, the research aims to investigate how these distortions affect the error resilience of 5G systems, particularly in terms of Error Vector Magnitude (EVM) instability, using Signal-Code Constructions (SCC) based on Quasi-Cyclic Low-Density Parity-Check Code (QC-LDPC) and Polar Codes (P-C) with 256-Quadrature Amplitude Modulation (256-QAM). This dual focus enables a comprehensive analysis of both signal correction mechanisms and their impact on communication reliability. This allows for a significant reduction in computational costs and delays, which is crucial for practical applications in 5G and IoT systems. The object of the study is the effectiveness of the CF loop combined with DPD, analyzed through Simulink Matlab, with an evaluation of its impact on the EVM, Modulation Error Ratio (MER), and Bit Error Ratio (BER). As a result of the research, it is shown that the CF loop enhanced with DPD significantly improves signal quality by reducing EVM and enhancing spectral purity compared to traditional compensation methods such as digital equalization and predistortion.The subject of the research is the optimization of the CF loop for wideband SDR transmitters in 5G mobile networks, aiming to enhance efficiency, reduce latency, and ensure high-quality signal transmission in systems that employ technologies such as OFDM and support IoT applications. The proposed approach enhances the reliability and stability of data transmission in modern wireless networks, which is particularly relevant given the increasing demands for speed and quality of service. The results of this study may be beneficial for telecommunications equipment developers and engineers involved in implementing advanced technologies in the field of wireless communication.

Author Biography

  • J. M. Boiko , Khmelnytskyi National University, Khmelnytskyi, Ukraine

    Dr. Sci. (Engin.), Professor of the Department of Telecommunications and Radio Engineering, Head of the Research Department

References

References

1. Marey, M. & Mostafa, H. (2021). Turbo Modulation Identification Algorithm for OFDM Software-Defined Radios. IEEE Communications Letters, Vol. 25, No. 5, pp. 1707–1711. doi:10.1109/LCOMM.2021.3054590.

2. Ghosh, A., Maeder, A., Baker, M., & Chandramouli, D. (2019). 5G Evolution: A View on 5G Cellular Technology Beyond 3GPP Release 15. IEEE Access, Vol. 7, pp. 127639–127651. doi:10.1109/ACCESS.2019.2939938.

3. Singh, B. K., Khatri, N. (2024). Enhancing IoT connectivity through spectrum sharing in 5G networks. International Journal of System Assurance Engineering and Management, Vol. 15, No. 10, pp. 5018–5029. doi:10.1007/s13198-024-02515-4.

4. Boiko, J., Pyatin, I., Eromenko, O., & Karpova, L. (2024). Evaluation of the Capabilities of LDPC Codes for Network Applications in the 802.11ax Standard. IoT Based Control Networks and Intelligent Systems. Lecture Notes in Networks and Systems, Springer: Singapore, Vol. 789, pp. 369–383. doi:10.1007/978-981-99-6586-1_25.

5. Abdulwahhab Mohammed, A. & Abdulwahhab, A.H. (2024). Analysis of potential 5G transmission methods concerning Bit Error Rate. AEU - International Journal of Electronics and Communications, Vol. 184, pp. 155407. doi:10.1016/j.aeue.2024.155407.

6. Li, J., Xu, Z., Hong, W., & Gu, Q. J. (2018). A Cartesian Error Feedback Architecture. IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 65, No. 3, pp. 1133–1142. doi:10.1109/TCSI.2017.2761394.

7. Chung S., Holloway, J. W., & Dawson, J. L. (2008). Energy-Efficient Digital Predistortion With Lookup Table Training Using Analog Cartesian Feedback. IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 10, pp. 2248–2258. doi:10.1109/TMTT.2008.2003139.

8. Falcon III RF-7800V-HH Handheld VHF Tactical Radio. Product details. L3Harris Technologies, last accessed Apr. 16, 2025.

9. Al-Rubaye, G. A. (2023). Performance of 5G NR-polar QAM-OFDM in nonlinear distortion plus Non-Gaussian noise over Rayleigh fading channel. AEU - International Journal of Electronics and Communications, Vol. 171, pp. 154929. doi:10.1016/j.aeue.2023.154929.

10. Anandkumar, D., & Sangeetha, R. G. (2022). Performance Evaluation of LDPC-Coded Power Series Based Málaga (Ḿ) Distributed MIMO/FSO LinkWith M-QAM and Pointing Error. IEEE Access, Vol. 10, pp. 62037–62055. doi:10.1109/access.2022.3180835.

11. Pyatin, I., Boiko, J., & Eromenko, O. (2024). Algorithmization and Hardware Implementation of Polar Coding for 5G Telecommunications. Transport and Telecommunication Journal, Vol. 25, Iss. 3, pp. 300–310. doi:10.2478/ttj-2024-0022.

12. Sun, H., Viterbo, E., Dai, B., & Liu, R. (2024). Fast Decoding of Polar Codes for Digital Broadcasting Services in 5G. IEEE Transactions on Broadcasting, Vol. 70, Iss. 2, pp. 731–738. doi:10.1109/tbc.2023.3345642.

13. Faulkner, M. (2000). An automatic phase adjustment scheme for RF and Cartesian feedback linearizers. IEEE Transactions on Vehicular Technology, Vol. 49, Iss. 3, pp. 956–964. doi:10.1109/25.845112.

14. Kerhervé, E., & Belot, D. (2015). Linearization and Efficiency Enhancement Techniques for Silicon Power Amplifiers. Academic Press (Elsevier), 154 p. doi:10.1016/c2013-0-00513-0.

15. Rawat, K., Roblin, P., & Koul, S. K. (2020). Digital Techniques for Broadband and Linearized Transmitters. Analog Circuits and Signal Processing, Springer International Publishing, pp. 301–350. doi:10.1007/978-3-030-38866-9_5.

16. Li, J., & Gu, Q. J. (2017). A low-noise cartesian error feedback architecture. 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1-4. doi:10.1109/iscas.2017.8050253.

17. Ock, S., Song, H., & Gharpurey, R. (2015). A Cartesian feedback-feedforward transmitter IC in 130nm CMOS. 2015 IEEE Custom Integrated Circuits Conference (CICC), pp. 1-4. doi:10.1109/cicc.2015.7338483.

18. Cavers, J. K., Mehrotra, K., & Woodward, G. K. (2019). Advantages of Second-Order Cartesian Feedback Linearizers for Radio Amplifiers. IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 66, Iss. 11, pp. 4134–4146. doi:10.1109/tcsi.2019.2926387.

19. Vaskovic, M., Kodogiannis, V. S., & Budimir, D. (2018). An adaptive fuzzy logic system for the compensation of nonlinear distortion in wireless power amplifiers. Neural Computing and Applications, Vol. 30, pp. 2539–2554. doi:10.1007/s00521-017-2849-3.

20. Cárdenas-Valdez, J. R., Núñez-Pérez, J. C., Galaviz-Aguilar, J. A., Calvillo-Téllez, A., Gontrand, C., et al. (2015). Modeling memory effects in RF power amplifiers applied to a digital pre-distortion algorithm and emulated on a DSP-FPGA board. Integration, Vol. 49, pp. 49–64. doi:10.1016/j.vlsi.2014.12.005.

21. Chettri, L., & Bera, R. (2020). A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems. IEEE Internet of Things Journal, Vol. 7, No. 1, pp. 16-32. doi:10.1109/jiot.2019.2948888.

22. Boiko, J., Druzhynin, V., Buchyk, S., Pyatin, I., & Kulko, A. (2024). Methodology of FPGA Implementation and Performance Evaluation of Polar Coding for 5G Communications. CEUR Workshop Proceedings, Vol. 3654, pp. 15-24.

23. Wang, X., Wang, J., Shen, Y., Shen, B., & Zhao, M. (2024). Low-Dimensional Post-Distortion for Nonlinear Power Amplifier in MIMO Systems. Wireless Personal Communications, Vol. 139, Iss. 3, pp. 1593–1605. doi:10.1007/s11277-024-11675-2.

24. Pyatin, I., Boiko, J., Eromenko, O., & Parkhomey, I. (2023). Implementation and analysis of 5G network identification operations at low signal-to-noise ratio. TELKOMNIKA (Telecommunication Computing Electronics and Control), Vol. 21, Iss. 3, pp. 496-505. doi:10.12928/telkomnika.v21i3.22893.

25. Babalola, A. H., Abdulkarim, O. A., Salihu, S. A., & Adebakin, T. O. (2024). Performance Analysis of MIMO-OFDM Systems in 5G Wireless Networks. In: Florez, H., Astudillo, H. (eds) Applied Informatics. ICAI 2024. Communications in Computer and Information Science, Vol 2237, pp. 278–291. doi:10.1007/978-3-031-75147-9_19.

26. Boiko, J., Eromenko, O., Kovtun, I., & Petrashchuk, S. (2019). Quality Assessment of Synchronization Devices in Telecommunication. 2019 IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO), pp. 694-699. doi:10.1109/ELNANO.2019.8783438.

27. Oladimeji, T. T., Kumar, P., & Oyie, N. O. (2022). Propagation path loss prediction modelling in enclosed environments for 5G networks: A review. Heliyon, Vol. 8, Iss. 11, ph. e11581. doi:10.1016/j.heliyon.2022.e11581.

28. Kim, J., & Konstantinou, K. (2001). Digital predistortion of wideband signals based on power amplifier model with memory. Electronics Letters, Vol. 37, No. 23, pp. 1417-1418. doi:10.1049/el:20010940.

29. Morgan, D. R., Ma, Z., Kim, J., Zierdt M. G., & Pastalan, J.(2006). A Generalized Memory Polynomial Model for Digital Predistortion of RF Power Amplifiers. IEEE Transactions on Signal Processing, Vol. 54, No. 10, pp. 3852-3860. doi:10.1109/TSP.2006.879264.

30. Boiko, J., Kovtun, I., & Petrashchuk, S. (2017). Productivity of telecommunication systems with modified signal-code constructions. 2017 4th International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T), pp. 173-178. doi:10.1109/INFOCOMMST.2017.8246374.

31. Mohamed, K. S. (2021). Hardware Realization of DPSK-Based Bluetooth Modem. Bluetooth 5.0 Modem Design for IoT Devices, Springer International Publishing, pp. 75–92. doi:10.1007/978-3-030-88626-4_4.

32. Zhang, Y., & Jiang, M. (2023). Genetic optimization of 5G-NR LDPC codes for lowering the error floor of BICM systems. Physical Communication, Vol. 58, pp. 102009. doi:10.1016/j.phycom.2023.102009.

33. Boiko, J., Pyatin, I., & Eromenko, O. (2024). Development of SC Polar Decoder Design Scenario for 5G/6G Telecommunications Applications. 2024 IEEE 17th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), pp. 1-6. doi:10.1109/TCSET64720.2024.10755649.

34. Jan, Q., Hussain, S., Pan, Z., Liu, N., Ali, Z., Liu, Z., & You, X. (2023). Parity-check and G-matrix based intelligent early stopping criterion for belief propagation decoder for polar codes. Digital Communications and Networks, Vol. 9, Iss. 5, pp. 1148-1156. doi:10.1016/j.dcan.2022.12.011.

35. Boiko, J., Pyatin, I., & Eromenko, O. (2022). Analysis of Signal Synchronization Conditions in 5G Mobile Information Technologies. 2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), pp. 01-06, doi:10.1109/TCSET55632.2022.9766899.

Downloads

Published

2025-06-30

Issue

Section

Telecommunication, navigation, radar systems, radiooptics and electroacoustics

How to Cite

“Optimization of Cartesian Feedback Loops for Wideband SDR Transmitters in 5G Mobile Networks” (2025) Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, (100), pp. 27–42. doi:10.20535/RADAP.2025.100.%p.